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SUMMARY
This paper focuses on robust control of a simplest passive model, which is established on a DCLF
(discrete control Lyapunov function) -based control system, and presents gait transition method based
on the study of purely passive walker. Firstly, the DCLF is introduced to stabilize walking process
between steps exponentially by modulating the length of next step. Next, the swing leg trajectory
from mid-stance position to foot-strike can be planned. Then the control law is calculated to resist
external disturbance. Besides, an impulse is added just before foot-strike to realize a periodic walking
pattern on flat or uphill ground. With walking terrain varying, the robot can transit to an adaptive
walking gait in a few steps. With different push or pull disturbances acting on hip joint and the
robot gait transiting on a continuously slope-changing downhill, the effectiveness of the presented
DCLF-based method is verified using simulation experiments. The ability to walk on a changing
environment is also presented by simulation results. The insights of this paper can help to develop a
robust control method and adaptive walking of dynamic passive locomotion robots.

KEYWORDS: Biped robot; Semi-passive dynamic walking; Discrete control Lyapunov function
(DCLF); Gait transition; Dynamic model.

1. Introduction
The biped robot has been brought into focus by its great terrain adaptability, obstacle avoiding ability
and unlimited potential in the field of military, space and ocean exploration and emergency res-
cuing. Both the task-space and joint-space control methods have been studied.1–5 The biped robot
can realize the pre-defined walking pattern with active torque control methods,6, 7 while the passive
walker can present a human-like walking pattern on a declined slope depending only on its gravity
changing and physical structure.8, 9 To make best use of these two methods’ advantages and bypass
their disadvantages, the idea to combine the active control and passive walking is proposed, called
passive-based control.10–12

Several researchers have proved the passive-based control can realize a more natural, robust
and energy-saving walking pattern on different walking terrains with reasonable stability. H. Gritli
et al. studied the semi-passive dynamic walking based on the OGY (OGY, Ott-Grebogi-Yorke)
control approach. A torso-dirven planar biped has been controlled to realize semi-passive gait
and the bifurcations and chaos phenomenon has also been analyzed.12, 14 Wang et al. introduced
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2 Robust control of semi-passive biped dynamic locomotion
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Fig. 1. Model of the biped simplest walker.

a torque-stiffness-controlled walking with an OGY-DFC control algorithm based on CPG.15, 16 Large
and small disturbance can be rejected by DFC and OGY method, respectively.17, 18 The coordina-
tion among limb motions served as feedbacks to modulate the CPG model. The biped walker can
realize stable and robust walking under different disturbances.19, 20 Yildirim et al. analyzed and
studied the characteristics of pure passive walking firstly.21 On this basis, the presented five-link
robot can complete passive dynamic walking on level ground and inclined slope with a low energy-
consumption.22, 23 Fu et al. combined the CPG (central pattern generation) and passive walking to
realize biped walking. Oscillators are directly utilized to control the hip and knee joints.24, 25 During
a walking cycle, the timing of the triggering and ceasing of oscillators were set by cognition of human
practical walking.26 Pranav et al. focused on the passive compass and the simplest walker and studied
the features of passive walking gait. The gaits starting at timing of mid-stance and foot-striking were
both studied.27, 28 The dead-beat method and discrete control Lyapunov function were utilized to cal-
culate the next step-length, which can be used to plan trajectory.28, 29 Then the walking stability can
be adapted exponentially within limited steps to realize robust walking patterns.30, 31 In our previous
work,32–34 some optimization methods have been used to generate a more energy-saving walking
patterns on a downhill with the assumption that there is no external disturbance during the walking
period. However, the external disturbance cannot be ignored in actual situation.

In this work, the DLCF-based control algorithm is presented to reject disturbance of the simplest
walker. The passive-based gait transition method is proposed to generate more adaptive and energy-
saving walking gaits. Comparing to the traditional robust controller, the presented controller is more
energy-saving with the passive walking property. Besides, combined with the passive walking the-
ory, the proposed gait-transition module can realize a more adaptive walking gait. Upon the theory
analysis and simulation conducting, the algorithm presented here can obviate the push or pull distur-
bance acting on hip joint within a reasonable wide range and switch the simplest model to a more
proper walking pattern. Then the robot can realize robust and adaptive walking gaits against external
disturbances and changing of walking environment.

The remainder of the paper is organized as follows. Section 2 analyzes the biped model and walk-
ing gaits. Section 3 develops the control of biped robot based on DCLF. The approach is demonstrated
to be validity in Section 4 with different simulations. The paper concludes in Section 5, including an
outline of future work.

2. Biped Model

2.1. Model description
This paper deals with a planar walker model shown in Fig. 1, named simplest walker. The walker
consists of two legs and three masses. The hip mass M is far greater than the mass m of foot, which
means m/M → 0. Besides, the length of leg is l = 1 and the initial downhill slope angle is γ = 0.009
rad. During the walking process, some assumptions are made as following. First, the friction between
the robot and ground is sufficient so that there is neither rebounding nor sliding.33–35 Then, all the
strikes are regarded as instantaneous and fully inelastic impacts. Last but not the least, there is no
force between the ground and the stance leg which is about to leave the ground.

The simplest model was studied by Garcia et al.9 As Fig. 1 shows, the simplest model presents
two sets of period-one walking solutions, a stable solution and an unstable solution respectively. With
reasonable initial parameters, it can walk on inclined slopes without any external control torques.
However, the application of passive walking is limited despite its sensitivity to parameters, which
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Robust control of semi-passive biped dynamic locomotion 3
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Fig. 2. Biped periodic gait starts at mid-stance.

leads to a poor adaptability for disturbances or environmental changing. The simplest walker is
used to present a better insight to achieve a more clear and concise analysis of dynamic walking.
Therefore, based on passive walking characteristics, the hip torque τ is added to overcome the deficit
of sensitivity.

2.2. Gait analysis
An ideal walking pattern would be a gait that can converge to a stable mode by automotive perception
and adaptive adjustment. Therefore, the analysis of biped walking gait is of great significance. The
robot starts walking at the state sk (θ, φ), and then gets to the same state of next step sk+1 (θ, φ). This
period is called a walking cycle. Theoretically, the state sk (θ, φ) can be chosen as an arbitrary state
during the walking.

The walking gait usually starts when the swing foot strikes the ground, namely the sk (θinit, φinit)

state and ends at the next foot-strike event. In this case, the walking process can be naturally divided
into a continuous swing phase and a discrete foot-strike phase. Further, the Poincare return section
is naturally chosen as the foot-strike event, and the Poincare return map serves as to search for the
fixed point and the eigenvalues of the linearized return map which can explain the walking stability.

The mid-stance is the moment that the stance leg is vertical to the ground and it plays a critical
role in robust walking and practical applications. The hip position reaches the highest position while
angular velocity is the smallest and easy to measure at mid-stance. Besides, the hip angular velocity
is critical for the analysis of robot falling events. If the hip velocity is much larger or smaller, the
robot would easily fall forward or backward. In contrast, the walking gait starts at foot-strike events
is not convenient for physical robot because it is hard to measure the impulse acting on the stance foot
at this moment. Meanwhile, the gait starting at mid-stance contains the foot-strike as an independent
phase and can be controlled by discrete control method.

The gait starting at mid-stance is shown as Fig. 2, in which the walking gait is divided into three
phases. The first swing phase starts from a mid-stance and ends at the moment before foot-strike.
The strike phase is the discrete foot-strike event. An impulse is added just before foot-strike to make
it possible for the simplest robot to walk on a flat or even uphill slope, while there is no impulse
added on a downhill. The second swing phase begins after foot-strike and ends at the next mid-
stance moment. Therefore, a whole walking gait cycle consists of two swing phases divided by the
mid-stance and a foot-strike phase.

2.3. Walking dynamics
In this section, the dynamic motion equations of the biped in sagittal plane model is derived. As
Fig. 1 shown, the x-axis is supposed to be along the forward direction and the y-axis is vertical to the
ground. The angle between two legs φ and the angle between stance leg and the norm of the slope θ
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4 Robust control of semi-passive biped dynamic locomotion

are introduced to describe the configuration of biped model in the coordinate space. Thus, the robot
posture can be arranged in a generalized vector q = [θ; φ]. The dynamic equation in swing phase can
be obtained through the Lagrange’s equation

D (q) q̈ + H (q, q̇) + G (q, γ ) = u (1)

where the matrices D (q) and H (q, q̇) are related to inertia and coriolis with centrifugal force respec-
tively. The G (q, γ ) is the gravity matrix depending on the slope angle γ . The joint torque vector is
presented as u = [τ ; 0], which means that only the hip joint is controlled.

By letting x = [
q; q̇

]
, the formula (1) can be converted as formula (2) in the state space.

ẋ = d

dt

[
q

q̇

]
= f (x) + g(x)u (2)

where f (x) and g(x) can be described as below

f (x) =
[

q̇
−D−1(q)(H(q, q̇) + G(q, γ )

]

g(x) =
[

0
D−1(q)

] (3)

With the assumption m/M → 0, the model described in formula (3) can be simplified by rescaling
time with

√
l/g. The dynamic equation during swing phase can be derived

θ̈ = sin (θ − γ )

φ̈ = sin (φ)
(
θ̇2 − cos (θ − γ )

)+ sin (θ − γ ) − τ
(4)

The detection of foot-strike event comes at the first to derive dynamic model during the foot-strike
phase. The foot-strike occurs when the state of robot in real-time meets the collision condition as
formula (5). According to the position and posture before and after foot-strike, as Fig. 2(b) and (c)
show, the angle switches as formula (6) described. Thus, the relation of angular velocity before and
after foot-strike can be derived by the conservation of angular momentum with time rescaled by

√
l/g,

as formula (7) shown.

c (q) = φ− − 2θ− = 0 (5)

[
θ+
φ+
]

=
[

1 −1
0 −1

] [
θ−
φ−
]

(6)

[
θ̇+
φ̇+

]
=
[

θ̇− cos
(
φ−)+ P sin

(
φ−)

θ̇− cos
(
φ−) (1 − cos

(
φ−))+ P sin

(
φ−) (1 − cos

(
φ−))

]
(7)

The foot-strike phase can be modeled as

x+ = �(x−) (8)

where x− = [
q−; q̇−] and x+ = [

q+; q̇+] are the state vectors before and after foot-strike. And �(x−)

can be expressed as below

�(x−) =

⎡
⎢⎢⎢⎣

θ− − φ−
−φ−

θ̇− cos
(
φ−)+ P sin

(
φ−)

θ̇− cos
(
φ−) (1 − cos

(
φ−))+ P sin

(
φ−) (1 − cos

(
φ−))

⎤
⎥⎥⎥⎦

Besides, some practical constraints should be added during the walking process to make it correct.
First, the direction of hip angular velocity must be the same as the walking direction, otherwise the
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Robust control of semi-passive biped dynamic locomotion 5
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Fig. 3. Biped walking states switching diagram.
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Fig. 4. Control diagram of the whole system.

robot will fall backward. Next, suppose that there is no flight phase which requires the direction
of ground reaction force must be similar to the y direction. Combining with the configuration, the
constraints can be described as follows

−√
cos (θ − γ ) < θ̇ < 0 (9)

With the dynamic model of swing phases, foot-strike phase and the physical constraints, the hybrid
dynamic model of the simplest walker can be obtained.

ẋ = f (x) + g(x)u, x− /∈ c

x+ = �(x−), x− ∈ c
(10)

where the state variable θ̇ should meet the requirement expressed by formula (9). The symbol c
represents the geometric constraints of foot-strike event. Figure 3 shows the walking gait is comprised
of two swing phases and a foot-strike phase as formula (10) expressed.

3. Control Method

3.1. Outline of control system
This paper focuses on the simplest walking gait starting at mid-stance. During the period from mid-
stance to foot-strike, a torque acting on hip joint is added to modulate the joint angle of swing leg.
Therefore, the biped robot can resist push or pull disturbances. According to the analysis of purely
passive walking and the solution of Poincare mapping, the biped walking on a changing slope can be
realized by gait transition.

The architecture of control system is demonstrated as Fig. 4. The system consists of a parameter-
input model, a periodic gait generator, a step-length controller and a gait generator.
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6 Robust control of semi-passive biped dynamic locomotion

The parameter-input model generates appropriate initial states and given parameters by solving
Poincare mapping based on dynamics. The periodic gait generator is responsible for stable walking
pattern generating. The step-length controller is based on Lyapunov stability theory. The controller
is used to reject external disturbance and then improve the robustness of system. The gait generator
begins with a judgement that determines whether there is external disturbance or not. If a disturbance
is added, the step-controller can reject it and there is no need to transit gait. Otherwise, a new gait
is generated. The step-length controller and gait generator are described in detail in the following
subsections.

3.2. Step-length controller based on Lyapunov stability analysis
According to formula (4), the angle φ(t) between stance and swing leg can be completely controlled
by hip torque τ while the angle θ(t) cannot be controlled during a walking period. However, based
on the assumption m << M and the dynamic model in formula (10), the state θ̇mid at mid-stance of
every period is of great significance for the following walking process.

At the timing of mid-stance, a Lyapunov function is defined as formula (11) shown. Then the for-
mula (12) can be derived to ensure the asymptotical stability of biped walking according to Lyapunov
direct method. Furthermore, the Lyapunov exponent stability can be ensured by setting the exponent
stability condition as formula (13) shown. Therefore, the angular velocity of stance can be controlled
discretely to reach asymptotically stable.

V
(
�θ̇k

)= �θ̇2
k = (

θ̇k − θ̇ideal
)2

(11)

V
(
�θ̇k+1

)− V
(
�θ̇k

)
< 0 (12)

V
(
�θ̇k+1

)− V
(
�θ̇k

)= −λV
(
�θ̇k

)
, 0 < λ < 1 (13)

where λ is the exponent convergence rate. θ̇k and θ̇ideal denote the stance velocity and the ideal stance
velocity at mid-stance in k-th step, respectively. θ̇0 represents the given initial stance velocity. The
formula (14) is the solution of the discrete equation (13). Then the relationship among the number of
steps k, convergence rate λ, the size of external disturbance

∣∣θ̇0 − θ̇ideal

∣∣ and the convergence precision∣∣θ̇k − θ̇ideal

∣∣ can be derived as formula (15).

V
(
�θ̇k

)= V
(
�θ̇0

)
e−λk, 0 < λ < 1 (14)

k = 1

λ
ln

(
V
(
�θ̇0

)
V
(
�θ̇k

)
)

= 2

λ
ln

(∣∣θ̇0 − θ̇ideal

∣∣∣∣θ̇k − θ̇ideal

∣∣
)

(15)

According to formula (15), some analyses are conducted to demonstrate the interactions among
parameters. As Fig. 5 shows, when

∣∣θ̇k − θ̇ideal

∣∣= 0.005 and θ̇ideal = −0.05923, the interactions
among k, λ and θ̇0 can be analyzed. If θ̇0 is determined, k is inversely proportional to the conver-
gence rate λ. If the λ is chosen as a constant, k is proportional to the external disturbance acting on
the robot

∣∣θ̇0 − θ̇ideal

∣∣. If k is set as a constant, the smaller the external disturbance, the wider the range
of convergence rate λ is. When λ < 0.2, the low convergence rate leads to a large number of walk-
ing steps to reject disturbance. This situation cannot be applied in practice to make walking process
stable rapidly. At the same time, when λ > 0.7, the number of walking steps is almost unaffected by
λ if the external disturbance is small. If the λ is too large, the step-length controller can be seen as a
dead-beat controller, which is sensitive to the model parameters. Therefore, the range of λ is chosen
within [0.2, 0.7] in the following simulations.

Then the local stability of robot walking can be studied by choosing the mid-stance state as
Poincare section. Combining the conservation of energy with the switch of states before and after
foot-strike, the analytic form of Poincare’s mapping function can be expressed as follows

θ̇k+1 = F1
(
θ̇k, φ−

k , Pk, γ
)

(16)
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Robust control of semi-passive biped dynamic locomotion 7

Fig. 5. The relationship between convergence rate and walking steps.

where φ−
k is the ideal angle between swing and stance leg during the current gait, which is related to

step length and therefore can be modulated to improve walking stability.
By solving the nonlinear equations (13) and (16), the step length related parameter φ−

k can be
calculated to make θ̇k converge to the given reference θ̇ideal at an exponent rate. From the practical
point of view, by modulating the step length or the position of stance foot, the external disturbance
can be rejected.

3.3. Swing leg trajectory planning
The value of φ−

k that can keep the walking process stable exponentially is derived in above section.
The stability between two successive steps can be guaranteed by modulating φ−

k .
With the given initial states φm

0 , φ̇m
0 at initial given time t = tstart, and the definite value of and

φ̇−
k = 0 as end states at time t = tmid2strike + tstart, the cubic interpolation method is applied to plan

the trajectory of swing leg from mid-stance to foot-strike, where the walking time during this period
tmid2strike can be predicted by formula (17).31 Then the swing leg trajectory can be planned by using a
simple cubic interpolation. With the planned swing leg trajectory, the control torque used to realized
robust walking can be derived according to the dynamic model in formula (4).

tmid2strike =
∫ θ=−φ−

k
2

θ=0

dθ√(
θ̇k
)2 + 2 (cos γ − cos (θ − γ ))

(17)

Therefore, the swing trajectory can guarantee that the stance angular velocity is anti-disturbance
and exponentially stable during the following walking process.

3.4. Discrete control just before foot-strike for periodic walking
As Fig. 2 shows, a discrete impulse, named push-off, is added just before foot-strike to realize flat
or uphill walking patterns based on the passive simplest model. As formula (16) presents the theory
the conservation of energy with the switch of states before and after foot-strike. Combining the
conservation of energy and the formula (8), the push-off at step k can be expressed as formula (18).
By setting θ̇k = θ̇k+1 = θ̇ideal and φ−

k = φ−
ideal, the push-off Pideal can be obtained for a periodic walking

pattern.

Pk =
cos

(
φ−

k

) √
θ̇2

k + 2
(
cos (γ ) − cos

(
φ−

k /2 − γ
))−

√
θ̇2

k+1 + 2
(
cos (γ ) − cos

(
φ−

k /2 + γ
))

sin
(
φ−

k

)
(18)

By referring a typical human walking pattern, the nominal walking velocity videal = 1.30 m/s is
used to realize periodic walking on flat or uphill.27, 36 With videal = 1.30 m/s, the non-dimensional
velocity can be calculated as Videal = videal/

√
gl = 1.30/

√
10 × 1 = 0.411. Then the empirical fit37

is utilized to get the step length, SLideal = 1.25 × V0.6
ideal = 0.733. The walking period time can be

obtained by Tideal = SLideal/Videal = 1.783. Combing the step-length with the physical robot model,
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8 Robust control of semi-passive biped dynamic locomotion

Fig. 6. The variation of step-length on different slopes.

the inter-leg angle φ−
ideal can be calculated as −0.751. Then the process to obtain θ̇ideal is descripted

as following. Considering formula (17), which is the time period from mid-stance to foot-strike, the
time period from foot-strike to the next mid-stance can be expressed as formula (19).

tstrike2mid =
∫ θ=0

θ=φ−
k
2

dθ√(
θ̇+)2 + 2 (cos (φ−/2 − γ ) − cos (θ − γ ))

(19)

According to Tideal = tmid2strike+ tstrike2mid = 1.783 with energy conservation law, θ̇ideal (related with
slope angle γ ) can be calculated by a numerical method. Then the pushoff for changing slopes can
be obtained online to realize a human-like walking pattern.

3.5. Gait transition
With the Lyapunov-based step-length controller, when θ̇0 = θ̇ideal and λ = 0.5, the slope angle is
assumed as a variable. Under the proposed control system, when the slope angle changes, the rela-
tionship between angle φk and swing angular velocity θ̇k can be presented in Fig. 6 as the black solid
lines shown. Inspired by this phenomenon, the purely passive walking on the Poincaré Section of
the simplest walker on different slopes are studied. Similarly, the relationship between φk and fixed
point θ̇k is demonstrated in Fig. 6 as the red dotted lines shown. As Fig. 6 shows, the curves of
inter-leg angle in these two situations are almost overlapped. However, the variations of θ̇k are not
identical. Under the proposed control method, the value of θ̇k is almost a constant while θ̇k changes
with slope angle in the purely passive walking. The reason why θ̇k is almost unchanged is that the
Lyapunov-based step-length controller modulates θ̇k converge to a given ideal value exponentially.
In this case, the tracking at exponent rate results in an unnatural walking gait and the unnecessary
energy-consuming. Therefore, the gait transition on different walking slope is essential.

For the purely passive walking, combing the conservation of energy with the mapping expressed
as formula (16), the relationships among φk, θ̇k and γ can be expressed theoretically as formula (20).
The analytic solution of this mapping cannot be solved.

φk = F2
(
θ̇k, γ

)
(20)

The numerical simulations are conducted to present how the initial value θ̇k and slope angle γ

effect the φk related to step length, as Fig. 7 shows.
In Fig. 7, when θ̇k is fixed as 0.05923, the variation of φk with γ is denoted as the blue triangle

line. When γ is set as 0.009, the curve of φk with θ̇k is shown as the red circle line. As the Fig. 7
shows, in a reasonable range, the variation of θ̇k has few effects on φk while the variation of γ has
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Robust control of semi-passive biped dynamic locomotion 9

Fig. 7. The impacts of θ̇k and γ on the inter-leg angle in a reasonable range (purely passive).

Fig. 8. The fitting result of purely passive walking.

great impact on φk. Therefore, the main factor affecting φk is the slope angle γ . This conclusion can
better explain the result of Fig. 6 and ensure that the control method based on the above analysis is
correct.

A gait transition process is added to the control system based on these theoretical analyses. The
external disturbance must be rejected by using step-length controller firstly. Next, a fitting curve, as
formula (21) expressed, is used to update the reference θ̇ideal according to the real-time slope angle.
Then the walking gait will transit to a more passive-like and energy-saving mode. The fitting curve
is presented in Fig. 8, the primary polynomial fitting is good enough both in the simplicity and
high-precision.

θ̇ideal = − (
0.144

∣∣φ−
k

∣∣+ 0.0017
)

(21)

4. Simulation Results

4.1. Simulation 1- the exponential stability on the downhill
In this simulation, the validity of the presented control method is verified. The comparison between
purely passive walking and the walking controlled by presented method with small disturbance is
shown in Fig. 9. The black solid line represents purely passive walking, which is fluctuated greatly
and easy to cause unstable walking.

Under the proposed control method, the disturbance can be rejected at an exponent rate and a
much larger disturbance can be resisted, as Fig. 10 shown, where the horizontal cyan dotted line is
the fixed point of purely passive walking. Therefore, the presented control method applied to the
simplest walking can improve stability and enhance the capacity of resisting disturbance.

The size of disturbance that the control method can resist is analyzed as Fig. 10 shown. Both the
above and below figures show, with the proposed control method, the robot can resist the push and
pull disturbance, respectively. At different convergent rates, the number of steps needed to converge
to the ideal value varies. This result is consistent with the previous theoretical analysis in Section 3.2.
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Fig. 9. Disturbance rejection with control V.S. without control.

Fig. 10. Push and pull disturbance can be resisted.

The figures in Fig. 11 vary from the convergent rates and each figure shows the exponent con-
vergence under different external disturbances. Comparing these three figures, it can be concluded
that when the convergent rate λ is even larger, the steps needed to reach stability is much less. In
each figure, when convergent rate λ is determined, more steps are needed to reach stability as the
disturbance is much larger. Besides, the influence of λ is more obvious than the size of disturbance.

4.2. Simulation 2- continuous changing slope walking
In the previous section, combining the theoretical explanation of Fig. 7 with the analysis and sum-
mary of simulation results in Fig. 6, the fitting result can be obtained as Fig. 8 shown. Then the
walking gait transition between different gaits can be realized to complete a more robust and adaptive
walking process.

In the situation that λ = 0.5, θ̇k = −0.5, γ ∈ [0.001, 0.040], the variation of φ−
k and θ̇k during

walking process is shown in Fig. 12. As it shows, the first step of this control method is to resist
external disturbance. When the disturbance is rejected, the robot can realize passive walking. The
second step is to transit gaits according to the changing slope. When the γ is changing, the inter-leg
angle φ−

k is also changing under the DCLF-based control method. The value of θ̇k varies with the
fitting result after the φ−

k is tending towards stability. The gait transition makes the walking process
more passive-like and efficient at the basis of stability and robustness.
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Fig. 11. The impacts of parameters θ̇k and λ on stability rate.

Fig. 12. The variation of φ−
k and θ̇k during walking process with disturbance.

Figure 13 is the variation of the height between swing foot and ground under the same condition
with Fig. 12. There are five different gaits in Fig. 13, which is related to the results of Fig. 12.
However, some scattered lines are partly below the x-axis, which means the position of swing leg is
lower than ground. This result is caused by the large size of disturbance and can be avoided by the
bent of knee-joint in practical human walking. In the figure below, there is no scattered line because
the disturbance is smaller. Therefore, the phenomenon in the left figure is reasonable and can be
avoided by adding knee-joint in future research.

The stick figure under the same disturbance and the same situation is shown in Fig. 14. At the first
mid-stance moment, the robot is perturbed. The slope angle is changing for every 5 walking steps
from 0.001 to 0.04 rad. As Fig. 14 shown, the robot can resist the disturbance in limited steps and
modulate the step length to adapt the variation of the walking environment.

Next, the push-off is considered to realize periodic walking on an uneven ground, whose slope
changes from γ = −0.03 (uphill) to γ = 0, then to γ = 0.03 (downhill). In the situation that
λ = 0.5, θ̇k = −0.5, the push-off can be calculated by the method mentioned in Section 3.4. Then
the stick figure of walking robot is shown as Fig. 15.

5. Conclusion
This paper studies the robust and adaptive control method based on the simplest passive walker. The
Lyapunov direct method is used to control the crucial state discretely during the walking. Then, the
inter-leg angle, related to the step-length, can be obtained to plan the swing leg trajectory from mid-
stance to foot-strike. The control torque can be calculated in the light of the dynamic model to reject
the disturbance by acting on the hip joint. The gait transition in real-time is proposed by combing
the simulation results and theoretical analysis of passive walking. Some simulations are conducted to
present that the Lyapunov-based control method can reject disturbance at an exponent rate and then
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12 Robust control of semi-passive biped dynamic locomotion

Fig. 13. The swing height when θ̇k = −0.5 and θ̇k = −0.1 during 5 gaits.

Fig. 14. Stick figure of robot during walking with disturbance on the changing downhill.

guarantee the stability of the system. Moreover, after proving the effectiveness of the Lyapunov-
based control algorithm, simulation results prove that the gait transition model is validity to realize a
more passive-like and energy-saving walking pattern. The obtained gait can realized more robust and
adaptive locomotion than the passive dynamic walking, which is stable only around the fixed point
but not energy-consuming.

This work focuses on the simplest model and then proposes the walking control method consist-
ing of Lyapunov-based controller and gait transition module. It has been verified that the robustness
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Fig. 15. Stick figure of robot during walking with disturbance on an uneven environment.

and adaptability of biped semi-passive walking can be achieved by using this control method.
Theoretically, the presented control method is also suitable for a more complex biped model. The
main difference is the dynamic model and some approximate condition related to model. Meanwhile,
this work uses the dimensionless parameters, which can make it easy to extend this algorithm to dif-
ferent robot model. Based on the simplest model, the theoretical derivation of this control algorithm
is described as explicit as possible. The detailed description of control algorithm is convenient for
understanding, analyzing and extending both theoretically and experimentally.

This paper realizes the biped semi-passive walking both on a relatively small slope and on a
continuous changing slope (including downhill, flat ground and uphill), respectively. Besides, the
biped walking on the level and even on the uphill is also worth studying. The walking on ground
with discrete obstacle and even the irregular ground is more common. Therefore, the control method
will be optimized and improved to solve these practical problems in the future work to enhance the
rapidity of disturbance rejection and the adaptability of the system.
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