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Abstract—Road curb detection is very important and neces-
sary for autonomous driving because it can improve the safety
and robustness of robot navigation in the outdoor environment.
In this paper, a novel road curb detection method based on
tensor voting is presented. The proposed method processes the
dense point cloud acquired using a 3D LiDAR. Firstly, we utilize
a sparse tensor voting approach to extract the line and surface
features. Then, we use an adaptive height threshold and a surface
vector to extract the point clouds of the road curbs. Finally,
we utilize the height threshold to segment different obstacles
from the occupancy grid map. This also provides an effective
way of generating high-definition maps. The experimental results
illustrate that our proposed algorithm can detect road curbs with
near real-time performance.

I. INTRODUCTION

A. Motivation

Road curbs are one of the most common road features. The
accurate detection of road curb can provide a traversable area
for unmanned ground vehicle (UGV) [1]. Furthermore, when
we plan a path for a UGV, the road curbs have to be detected
beforehand because this can help the UGV avoid collision
[2]. Furthermore, the information of the road curb is usually
utilized in adaptive Monte Carlo localization (AMCL) [3] to
provide a constraint in the axis is perpendicular to the road
curb.

Currently, most researchers geometry to extract road curbs.
The method proposed in this paper is developed based on
temporal filters and spline fitting.

However, most of the algorithms require some expen-
sive Lidar, such as, Velodyne HDL-64-E, StreetMapper, and
RIEGL VMX-250. These algorithms are usually very compu-
tationally intensive [4].

Halawany proposed algorithm [5] computes the surface
normal and the normalized eigenvalues to extract features,
such as road curbs. The output of our curb detection system
is also utilized as the input of AMCL for localization.

B. Contributions

We address two issues in this paper:
• We present a novel method to extract the point clouds of

road curbs from dense point clouds generated using the
tensor voting frame-work. Firstly, we extract the line and
surface features using tensor voting and use the surface

feature to estimate the ground height, use the normal
information and the line feature to extract the curb.

• After getting the information of road curbs, we also use
the digital elevation map (DEM) to estimate different
obstacles with different traversable features. We also use
different colors to represent the different semantically
meaningful regions in the grid map for further path
planning.

C. Organization

The remainder of this paper is organized as follows. We
present related works in Section II. In Section III, we briefly
introduce our system. In Section IV, we compare two different
ways of obtaining the dense cloud map: iterative closest point
(ICP) mapping and lidar odometry and mapping (LOAM). The
Section V gives the method to detect the road curb by tensor
voting. In VI; we use the result of tensor voting to extract the
road curb and project it to a grid map with different semantics.

II. RELATED WORKS

A. Road Curb Detection

The approaches for road curb detection can be classified into
two main categories: geometry-based and machine-lerning-
based. Zhao et al. [6] use three spatial cues and a parabola
model to detect curbs. Hata et al. [7] introduce a least trimmed
squares (LTS)-based curb detection approach. In addition,
Kodagoda et al. [8] presents an effective detection method
based on an extended Kalman filter (EKF) to esti-mate the
positions of road curbs. Kellner et al. [9] presents a method
based on a digital elevation map (DEM) and this method
estimates the most likely path to get the curb. Fong et al.
[10] also utilize DEM for the same purpose. Furthermore,
Caltagirone et al. [11] introduces a robust algorithm based on
a convolutional neural network (CNN) to detect road surface
and traversable areas from bird’s-eye view maps. This shows
good performance in terms of both speed and accuracy.

B. Dense Point Cloud Map

There are lots of ways to get the direct dense point cloud
map. The first way is to get the dense point cloud map from
the sensor in one frame; for example, we can get the dense
cloud map from the stereo camera and reconstruct the road

ar
X

iv
:1

91
1.

12
93

7v
1 

 [
cs

.R
O

] 
 2

9 
N

ov
 2

01
9



Fig. 1. An example of the UGV platform.

surface [12] [13], and we also can get the dense point cloud
map from solid-state Lidar.

The other way to get a dense point cloud map is to get
the point from several frames, one example is LiDAR SLAM,
where we can get the dense point cloud map by the LOAM
algorithm given by Zhang [14], or an algorithm like ICP [15]
mapping.

C. Tensor Voting

The tensor voting [16] starts with computer vision; and it is
widely used in feature extraction; it shows a good tolerance in
noise. Schuster [17] uses this method for point cloud surface
segmentation. In our attempt; we use the GPU to accelerate
the computing process according to the method given in [18].
This method can extract the different features in the image
and point clouds.

D. Digital Elevation Map

The digital elevation map is widely used in ground finding
and road curb detection. Fong [10] uses a digital elevation
map to get the traversable area and make a two and one-
half dimensional map structure to store the height of each
grid’s height. Kellner [9] gives a new way to obtain the
digital elevation map with a motion estimation module. Some
scholars have attempted using a Kalman-Filter to estimate
the cells height value [19]. It is important to know the road
height for the UGV in an urban environment, for which the
classification and tracking can be done based on the road
height.

III. SYSTEM ARCHITECTURE

A. Sensors and platforms

Our method is evaluated on a UGV. This platform is a
differential drive ground robot. An example of the platform
is shown in Fig. 1.

The sensors and perception modules we use include Li-
DAR, an inertial measurement unit (IMU), and an encoder.
In addition, the vehicle is equipped with an RS-LiDAR-16
produced by Robosense which can update the data with 20
Hz.

Fig. 2. Block diagram of the proposed system.

Fig. 3. The comparison between LOAM and ICP.

B. Program architecture

In this paper, our program has 4 major parts, which are
shown in Fig. 2. The first part is the mapping part, in which
fuse the encoder and IMU to get the pose estimation of our
UGV by the EKF. The encoder and IMU are light-invariant
sensors, so we can get the exact odometry both day and night.
The Lidar works at 20 Hz, and during the gap we should
use the result of the EKF to get the shift of the UGV. This
estimation will increase the accuracy of our map.

Secondly, we use the tensor voting framework to get the
different features out of the cloud map. Thirdly, to get the
exact position of the road curb, we use the DEM and feature
filter to get points that belong to the road curb. In the fourth
step we project these points to a 2D map and use different
colors to represent the different sematics of the obstacles.

C. Mapping method

In the mapping process, we compare the difference be-
tween LOAM and the ICP, as shown in Fig. 3. LOAM [14]
uses multi-beam LiDAR moving in 6-DOF and makes use
of the line and plane features to match the different beams,
while the ICP [20] registers the point clouds by iteratively
minimizing the distances between the closest points. The
difference between the ICP and LOAM is the way of getting
features: the ICP uses the geometric points information to
match the features in different frames.

In Fig. 3 we compare the mapping method of LOAM (left)
and the ICP mapping (right). We find that the ICP mapping
has denser points compared to LOAM and it is more correct
when it used for registration. The tensor voting framework, it
will have better performance when we use a denser map.



Fig. 4. The steps of tensor voting.

IV. TENSOR VOTING FRAMEWORK

A. Tensor Voting Framework

Tensor voting was first used in image processing. This
algorithm is based on the Gestalt theory, which means when
people are looking at curves and surfaces, they will auto extend
the curve and surface to an entirety.

Jia [21] uses the feature of tensor voting for picture repair-
ing, and translate the color and the texture information into
the ND tensor to obtain the missing color. In recent research
[18], the tensor voting frame work is also used in the surface
normal estimation for the point cloud obtained form LiDAR.

Normally, tensor voting has two tensor voting procedure,
the first one is sparse voting, the second one is dense voting.
Sparse voting only uses ball voting because at the beginning,
each point does not have a tensor.

If the points are sufficiently dense and accurate enough, we
can only use the sparse voting, because we do not need to
reconstruct the surface.

k(d,σ) = e−
d2

σ2 (1)

The sparse voting in the point cloud uses the location infor-
mation as input to estimate the voting result. This procedure
is called encoding, and gives each point 1 as the initial value.
In general, this voting result obtains the refined tensors for
another tensor voting process. The sparse voting is mainly
calculating the ball voting. When we calculate the vote of other
points, we choose to use Equation (1) to decay the influence
of the points that are far away from current point, where d is
the distance between the point and its neighbor, and σ is the
voting area.

Ball =

∫ 2π

0

∫ 2π

0

R−1γα (Tsp) dθ1dθ2 (2)

Equation (2) shows the procedure to calculate ball voting.
Rγα is a transform matrix, because we need to calculate the
other directions integration in the ball area. This is the result
of voting in different directions, and the point that we are
calculating. This formula represents that if a point is farther
away, the point that has been voted will receive less influence
from this point.

Fig. 5. Tensor Voting component.

The algorithm runs as Fig. 4, which shows the procedure
of sparse tensor voting. We do not use dense voting because
of the time cost of the calculation.

T = λ1ê1ê
>
1 + λ2ê2ê

>
2 + λ3ê3ê

>
3 (3)

Stick component = (λ1 − λ2) ê1ê>1 (4)

Plate component = (λ2 − λ3)
(
ê1ê
>
1 + λ2ê2ê

>
2

)
(5)

Ball component = λ3
(
ê1ê
>
1 + ê2ê

>
2 + ê3ê

>
3

)
(6)

The tensor tokens we calculated after ball voting are in
Equation (3), and the following step is to decompose these
parts into a surface curves component. For the following
component, we can use (4), (5) and (6) to decompose these
features.

Fig. 5 shows the tensor. Such a tensor can be visualized as
an ellipse in 2-D, or an ellipsoid in 3-D. The shape of the
tensor is ellipsoidal and it shows the captured information,
curve and surface element saliency.

In the tensor voting we regard λ1 ≥ λ2 ≥ λ3 as the eigen
value. We also regard ê1ê2ê3 as the eigen vector.

Fig. 5 shows the three components. The left component is
the stick tensor and it is in the shape of an elongated elli-
posid. We can regard it as a point on a smooth surface. The
middle component is the plate tensor, which is represented
by a circular disk. This disc is perpendiclar to the tangent
of the curve which is the junction of the two surfaces. The
right component is the ball tensor, which is an isolated point
or a junction of curves. This tensor does not have saliency
preference and the shape of the tensor is a sphere.

From Equation (4), (5) and (6) we can also get the different
saliencies; the stick votes are weighted by λ1 − λ2 , the plate
votes by λ2 − λ3 and the ball votes by λ3.

After decomposing the defeature, we give the additional
channels to the point. These channels stand for the saliency of
their different components. This step helps us to visulize the
result and get points which belong to the curb.

B. Result of Tensor Voting

Fig. 6 shows the result of sparse tensor voting for a test point
cloud. This result shows the saliency of the stick component.
We can get the information that the bottom in the colour purple
shows the biggest possibility of belonging to a surface.

We also tried the tensor voting algorithm on LOAM [14],
which can generate a dense map from an individual laser scan



Fig. 6. The test results of tensor voting.

Fig. 7. Tensor voting on local map.

from LiDAR. It calculates the transform between 2 frames
and adds each frame to be a big global map. We get the local
dense map to calculate the result.

V. ROAD CURB DETECTION

Fig. 7 shows the result after we cut the dense map generated
from LOAM into a 20m× 20m× 2m cube to test the result
of tensor voting, we test it on the GTX 1080 GPU. We
get an average calculation time of 0.34886 sec in a normal
city situation. When we compare the LOAM mapping update
speed, which is 1 HZ, it has the potential to be a real-time
algorithm.

In this part we introduce the method to find the road using
the result of tensor voting.

A. Ground detection

After we obtain the stick feature of the point cloud, we
can extract the component which most likely belongs to the
ground. We set a threshold of the stick component channel
to get the plane and we can use the tensor voting result to
estimate the grounds normal. [22]

Fig. 8 shows the result after we extract the ground com-
ponent and other surface components. In further experiments it
is important to know the exact height of the ground component
as it helps to get the DEM.

Fig. 8. The result aftet surface extraction.

Fig. 9. The line feature saliency.

B. Line feature detection

In the tensor voting framework it is easy to get the normal of
the surface of each point by the direction of the feature value.
After we get the surface normal, we can calculate the angle
between the Z axis, which is perpendicular to the ground, and
we can set a filter of the angle between each point normal
and the Z axis. Using this approach, we can obtain the initial
estimate of the road height. We save these heights in the grid.
We reduce the height that is different from the nearby grid as
these noises come from surfaces like the top of trees, which
also have same surface normal as ground.

The size of the grid should not be too large because if the
surface is changing smoothly, and if the points are not dense
enough it will lead to incorrect estimation of the height. In
this environment, we choose the same size as the UGV which
is 0.5m× 0.5m.

In the line feature detection, we can extract the line feature
from the plate component. The line feature has a strong
relation according to Equation (1), which describes how the
area of other points can influence the current point.

In the tensor voting framework, it is easy to get the surface
normal from the result, we can get the direction of surface.
From the plate component (7) we find that the it shows the
saliency λ2 − λ3 and the surface direction.

Tp = (λ2 − λ3)
(
ê1ê
>
1 + λ2ê2ê

>
2

)
(7)

As is shown in Fig. 9, we can obtain the road curb, which
is green. The green part in the point cloud are points with a



Fig. 10. The Z axis saliency of each points.

Fig. 11. The points that belong to road curb.

higher λ2−λ3 value; the higher value means that point is more
likely to be at a line. Fig. 10 shows the Z axis volume, this
is the result that is directly obtained from the tensor voting
algorithm. It can be regarded as the saliency of the vertical
and we can find the road curb has different vertical intensities
compared to other points with a low plate intensity. This value
also can be regarded as the z-component normal of the point
cloud.

C. Filtering

After we detect the line feature and the surface normal, we
use the DEM to be the height estimation of the ground. The
DEM is used to describe the ground height of the map.

In the first step, we get a rough estimation of the ground
which is based on the height of the plane and surface direction.
The rough estimation helps us to reduce large errors of the
ground. We set it as 10m×10m, then we can get the accurate
estimation of the elevation of the ground by reducing the
grid which may have a large error with the majority ground
components. We set it as 1m × 1m. From this approach we
can get a good height estimate of each point.

We use the refined elevation map to reduce the unrelated
points, such as the upper part of trees and some line features
of other vehicles. We regard the height that is 50 cm higher
than the ground as unlikely to find the curb.

Fig. 12. The experimental results. The point clouds in red are the detected
walls. The point clouds in green are the detected road curbs.

The result is shown in Fig. 11. After we use the line feature
and the DEM to reduce the unrelated area, we can find that
the majority of the road curb has been extracted successfully.
Then we use the outlier filter to strengthen the road curb.

D. Project to map

The 2D grid map has good potential to formulate a high
definition map. This kind of map has taken up a small amount
of storage memory and the grid map can has a good sematic
when giving different colors.

In this part, we use the result of tensor voting, the number
of points in same grid, and the road curb to get the different
sematics of the map. In the Fig. 12 we can see the road curb
and other obstacles with a small height, which are also marked
in green in the 2D grid map. An obstacle that is absolutely
not traversable, such as a wall or vehicle, is marked in red and
the zone sufficient enough points and tensor voting results we
regard as the unknown area. The details judge feature and the
different sematics are shown in the TABLE. 1.

TABLE I
DIFFERENT FEATURE AND SEMATIC

Sematic Feature and color
Head Feature Color Traversable

Road curb Result of Tensor Voting Green Certain con-
ditions

Obstacle Not higher than UGV Black No
Wall/Vehicle Obstacle has lots of points

in high position
Red No

Road Surface normal has same
direction with Z axiz and-
closed to the hight of
DEM

Gray Yes

Unknown Without enough points to
do tensor voting

Dark green Yes

We also make a definition about the trafficability of each
sematic, this helps the path planning for further study. We
can cross the road curb with a lower speed and with a lower
angle, this will help us to have more options when we want



to go from point A to B. The sematic map will also help us
to achieve localization because it has more different features
than a normal grid map, and it also takes a lower CPU utilized
percentage which means it is easier for global path planning.

VI. CONCLUSION

In this paper, we aim to solve the problem of obtaining the
road curb from the data of a LiDAR sensor. This problem
is critical in formulating a high definition map and for urban
autonomous driving. We also built a 2D sematic map to make
use of the different features.

We first generate the dense map from the ICP mapping
method and we compare two different mapping methods. Then
we present a new method based on tensor voting to extract the
line feature and surface feature after mapping. Next we use
the digital elevation map to get the basic estimation of the
average height of each grid as the further parameters of the
filter. We also set the different feature filters, to get the correct
points of the road curb.

Additionally, we focus on how to get a better sematic of
the map in future usage. In this approach, we refine the map
to a resolution of 0.12 meters, which meets our expectation.
We also find that the storage of the 2D grid mapping is just
707 kB, this result is 85.4 times smaller than the result of ICP
mapping and 9.7 times smaller than the result of LOAM.

In the future, we will add some details like lane lines
into this sematic map to get more precise and abundant
information about the road condition. With more information,
we can obtain more rules to control vehicles in a high speed
environment in the future.

Additionally, another point we should like to improve in the
future is that we should set some regions of interest (ROI) for
our further tensor voting process. This approach will reduce
the calculation complexity and finally realize real-time road
curb detection.
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