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Abstract— We present LINS, a lightweight lidar-inertial state
estimator, for real-time ego-motion estimation. The proposed
method enables robust and efficient navigation for ground
vehicles in challenging environments, such as feature-less scenes,
via fusing a 6-axis IMU and a 3D lidar in a tightly-coupled
scheme. An iterated error-state Kalman filter (ESKF) is de-
signed to correct the estimated state recursively by generating
new feature correspondences in each iteration, and to keep
the system computationally tractable. Moreover, we use a
robocentric formulation that represents the state in a moving
local frame in order to prevent filter divergence in a long run.
To validate robustness and generalizability, extensive experi-
ments are performed in various scenarios. Experimental results
indicate that LINS offers comparable performance with the
state-of-the-art lidar-inertial odometry in terms of stability and
accuracy and has order-of-magnitude improvement in speed.

I. INTRODUCTION

Ego-motion estimation is a fundamental prerequisite to
enable most mobile robotic applications—poor real-time
capability and failure of the algorithm can quickly lead
to damage of the hardware and its surroundings. To this
end, active sensors, such as lidars, are proposed to fulfill
this task, which widely known as simultaneous localization
and mapping (SLAM). Some of the key advantages of a
typical 3D lidar include (i) wide horizontal field-of-view
(FOV) [1] and (ii) invariance to ambient lighting conditions
[2]. However, the lidar-based navigation system is sensitive
to surroundings. Furthermore, the motion distortion [3] and
sparse nature of point clouds [4] make it even worse in some
challenging scenarios (e.g. a wide and open area).

Recent research has demonstrated that deficiencies of a
stand-alone lidar can be compensated by fusing an IMU. An
IMU, unlike lidar, is insensitive to surroundings. It provides
accurate short-term motion constraints and generally works
at a high frequency (e.g., 100 Hz-500 Hz). These features can
help the lidar navigation system to recover point clouds from
highly dynamic motion distortion and thus increase accuracy.
However, the state-of-the-art lidar-inertial odometry (LIO)
[5] which is based on graph optimization cannot be directly
applied to real-time navigation due to high computational
expense; for a single scan, it takes more than 100 millisecond
to compute the lidar-inertial odometry and even more time
to maintain a map.

In this paper, we propose LINS, a lightweight lidar-
inertial state estimator for real-time navigation of unmanned-
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Fig. 1. 3D Map built by LINS with a Velodyne VLP-16 and an Xsens MTi-
G-710 IMU in a port in Guangdong. We can observe the good alignment of
the resulting map with Google Map, even in some feature-less environments
as shown in images on the right.

ground-vehicles (UGVs). An iterated error-state Kalman
filter (ESKF) is designed to ensure both accuracy and
efficiency. To achieve long-term stability, we introduce a
robocentric formulation of the state in which the local frame
of reference is shifted at every lidar time-step, and the
relative pose estimate between two consecutive local frames
is used for updating the global pose estimate. The main
contributions of our work are as follows:

• A tightly-coupled lidar-inertial odometry algorithm,
which is faster than our previous work [5] by an order
of magnitude, is proposed.

• We present a robocentric iterated ESKF, which is veri-
fied in various challenging scenarios and shows superior
performance over the state of the art.

• The source code is available online1. To the best of
our knowledge, LINS is the first tightly-coupled LIO
that solves the 6 DOF ego-motion via iterated Kalman
filtering.

The remaining paper is organized as follows. In Sect.
II, we discuss relevant literature. We give an overview of
the complete system pipeline in Sect. III. The experimental
results are illustrated in Sect. IV, followed by a conclusion
in Sect. V.

1https://github.com/ChaoqinRobotics
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Fig. 2. Pipeline of the LINS system. The lidar-inertial odometry module, which consists of state propagation and update submodule, performs iterated
Kalman filtering using IMU measurements and point cloud features extracted from the feature extraction module. The mapping module outputs a refined
pose estimate along with a global 3D map. The refined pose estimate is combined with IMU measurements to generate high-output-rate results. Note that
the focus of this work is the lidar-inertial odometry module.

II. RELATED WORK

There are hundreds of works on lidar-related odometry
in the literature. We restrict our attention to related work
on the 6 DOF ego-motion estimators and relevant fusion
algorithms, which are categorized into the loosely-coupled
and the tightly-coupled.

A. Lidar-only Methods

Many lidar-only approaches are variations of the well-
known iterative closest point (ICP) scan matching method
which is based on scan-to-scan registration. [6], [7] had
surveyed efficient variants of ICP. For real-time application,
[8] established LOAM which sequentially registers extracted
edge and planar features to an incrementally built global
map. [9] proposed LeGO which adapts the original LOAM
to UGV application. By applying ground plane extraction
and point cloud segmentation, LeGO filtered out unreliable
features and showed great stability in areas covered with
noisy objects, i.e., grass and trees. [10] provided an efficient
loop closure mechanism to enable large-scale mapping in
real time.

B. Loosely-coupled Lidar-IMU Fusion

Loosely-coupled methods deal with two sensors separately
to infer their motion constraints which are fused later (e.g.,
[11], [12]). IMU-aided LOAM [8] took the orientation and
translation calculated by the IMU as priors for optimization.
[13] combined the IMU measurements with pose estimates
obtained from a lidar-based Gaussian particle filter and a
pre-built map. In general, loosely-coupled fusion is computa-
tionally efficient [14], but the decoupling of lidar and inertial
constraints results in information loss [15].

C. Tightly-coupled Lidar-IMU Fusion

Tightly-coupled approaches directly fuse lidar and iner-
tial measurements through joint-optimization, which can be
categorized into optimization based [16], [17] and extended
Kalman filter (EKF) based [18], [15]. [19] performed lo-
cal trajectory optimization via minimizing constraints from
the IMU and lidar together. [20] presented LIPS which

leveraged graph optimization over the inertial pre-integration
constraints [21] and plane constraints from a lidar. [5] estab-
lished LIO-mapping (for brevity, termed LIOM in the fol-
lowings) which is also based on graph optimization but with
a novel rotation-constrained mapping method to optimize
the final poses and maps. However, constraint construction
and batch optimization in a local map window are too time-
consuming for real-time application. [22] introduced a lidar-
aided inertial EKF based on a 2D lidar. But its application
scenarios were limited to indoor environments because it
required that all surrounding planes are in an orthogonal
structure.

It is well known that EKF is vulnerable to linearization
errors which may cause poor performance and even lead
to divergence [23], [24]. This shortcoming becomes salient
when it involves lidar-observed scan-to-scan constraints,
which is deemed highly nonlinear if the initial pose is
incorrect and causes wrong feature-matching results. To
eliminate errors caused by wrong matching, we presented
an iterated Kalman filtering [26] which can repeatedly find
better matchings in each iteration. Besides, we adopted an
error-state representation to guarantee linearization validity
[27]. This characteristic distinguishes our method from the
iterated extented Kalman filter [25].

III. LIDAR-INERTIAL ODOMETRY AND MAPPING

A. System Overview

Consider an UGV equipped with an IMU and a 3D
lidar. Our goal is to estimate its 6 DOF ego-motion and to
establish a global map simultaneously, as shown in Fig. 1. An
overview of the system framework is depicted in Fig. 2. The
overall system consists of three major modules: feature ex-
traction, LIO, and mapping. (i) The feature extraction module
aims at extracting stable features from raw point clouds. (ii)
The LIO module, which consists of propagation and update
submodules, carries out iterated Kalman filtering and outputs
an initial odometry along with undistorted features. (iii) The
mapping module refines the initial odometry by the global
map and outputs a new odometry, followed by updating the
map using new features. Due to the space issue, we only



focus on the odometry module. We refer the reader to [8],
[9] for detailed procedures of feature extraction and mapping.

B. Feature Extraction

This module inputs the raw point cloud and outputs a
group of edge features, Fe, and a group of planar features,
Fp. Readers can see [9], [8] for detailed implementations.

C. Lidar-Inertial Odometry with Iterated ESKF

The LIO module uses IMU measurements and features
extracted in two consecutive scans to estimate the relative
transformation of the vehicle. We use a robocentric formu-
lation to build the iterated ESKF because it prevents large
linearization errors caused by ever-growing uncertainty [28],
[29]. Let Fw represent the fixed world frame, Fbk represent
the IMU-affixed frame at k lidar time-step, and Flk represent
the lidar frame at k lidar time-step. Note that, in our work,
the local frame is always set as the IMU-affixed frame at
previous lidar time-step.

1) State Definitions: Let xbk
w denote the location of Fw

w.r.t. Fbk . Let xbk
bk+1

denote the local state that describes the
relative transformation from Fbk+1 to Fbk :

xbk
w :=

[
pbk

w ,qbk
w

]
, (1)

xbk
bk+1

:=
[
pbk

bk+1
,vbk

bk+1
,qbk

bk+1
,ba,bg,gbk

]
, (2)

where pbk
w is the position of Fw w.r.t. Fbk and qbk

w is the unit
quaternion describing the rotation from Fw to Fbk . pbk

bk+1

and qbk
bk+1

represent the translation and rotation from Fbk+1

to Fbk . vbk
bk+1

is the velocity w.r.t. Fbk . ba is the acceleration
bias and bg the gyroscope bias. It is important to note that
the local gravity, gbk (represented in Fbk ), is also part of the
local state.

For having good properties in state estimation [30], an
error-state representation is used to solve xbk

bk+1
. We denote

an error term with δ and define the error vector of xbk
bk+1

as

δx := [δp,δv,δθ ,δba,δbg,δg] , (3)

where δθ is a 3 DOF error angle.
According to the ESKF traditions, once δx is solved, we

can obtain the final xbk
bk+1

by injecting δx into the state prior

of xbk
bk+1

, −xbk
bk+1

. This is conducted via a boxplus operator �
which is defined as:

xbk
bk+1

=− xbk
bk+1

�δx =



−pbk
bk+1

+δp
−vbk

bk+1
+δv

−qbk
bk+1
⊗ exp(δθ)

−ba +δba
−bg +δbg
−gbk +δg


, (4)

where ⊗ denotes the quaternion product and exp : R3 →
SO(3) maps the angle vector to quaternion rotation [31].

2) Propagation: In this step, we propagate the error state,
δx, the error-state covariance matrix, Pk, and the state prior,
−xbk

bk+1
, if a new IMU measurement arrives. The linearized

continuous-time model [32] for the IMU error state is written
as

δ ẋ(t) = Ftδx(t)+Gtw, (5)

where w = [nT
a ,nT

g ,nT
ba
,nT

bg
]T is the Gaussian noise vector

(whose definitions are the same as [16]). Ft is the error-state
transition matrix and Gt is the noise Jacobian at time t:

Ft =



0 I 0 0 0 0
0 0 −Rbk

t [ât ]× −Rbk
t 0 0

0 0 −[ω̂ t ]× 0 −I3 −I3
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 , (6)

Gt =



0 0 0 0
−Rbk

t 0 0 0
0 −I3 0 0
0 0 I3 0
0 0 0 I3
0 0 0 0

 , (7)

where [·]× ∈ R3×3 transfers a 3D vector to its skew-
symmetric matrix. I3 ∈ R3×3 is the identity matrix and Rbk

t
is the rotation matrix from the IMU-affixed frame at time
t to Fbk . ât and ω̂ t are acceleration and angular rate at
time t, respectively, and they are calculated by removing
the biases and the gravity effect from the raw accelerometer
measurement, amt , and gyroscope measurements, ωmt , as

ât = amt −ba, (8)
ω̂ t = ωmt −bg. (9)

Discretizing Equation (5) yields following propagation
equations:

δxtτ = (I+Ftτ ∆t)δxtτ−1 , (10)

Ptτ =(I+Ftτ∆t)Ptτ−1(I+Ftτ∆t)T +(Gtτ∆t)Q(Gtτ∆t)T , (11)

where ∆t = tτ − tτ−1. tτ and tτ−1 are consecutive IMU time-
steps. Q expresses the covariance matrix of w, which is
computed off-line during sensor calibration.

To predict −xbk
bk+1

, the discrete-time propagation model for
the robocentric state is required. Readers can refer to [15],
[27] for details in integrating IMU measurements.

3) Update: We now present the iterated update scheme,
which is the primary contribution of this work.

In iterated Kalman filtering, the state update can be
linked to an optimization problem [7], [29] considering the
deviation from the prior −xbk

bk+1
and the residual functions,

f (·), (i.e., innovation2) derived from the measurement model:

min
δx
‖δx‖(Pk)

−1 +‖ f (−xbk
bk+1

�δx)‖(JkMkJT
k )
−1 , (12)

2Note that innovation is the difference between the actual an expected
measurements [25]



where ‖·‖ denotes the Mahalanobis norm. Jk is the Jacobian
of f (·) w.r.t. the measurement noise and Mk is the covariance
matrix of the measurement noise. The output of f (·) is
actually a stacked residual vector calculated from point-edge
or point-plane pairs. Given xbk

bk+1
, the error term in f (·)

that corresponds to plk+1
i , the i th feature point which is

represented in Flk+1 , can be described as:

fi(x
bk
bk+1

)=


|(p̂lk

i −plk
a )×(p̂lk

i −plk
b )|

|plk
a −plk

b |
if plk+1

i ∈Fe

|(p̂lk
i−plk

a )
T((plk

a−plk
b )×(p

lk
a−plk

c ))|

|(plk
a −plk

b )×(plk
a −plk

c )|
if plk+1

i ∈Fp

, (13)

and we have

p̂lk
i = RbT

l (Rbk
bk+1

(Rb
l plk+1

i +pb
l )+pbk

bk+1
−pb

l ), (14)

where p̂lk
i is the transformed point of plk+1

i from Flk+1 to Flk .
Rb

l and pb
l together denote the extrinsic parameters between

the lidar and IMU (calculated in off-line calibration).
A physical explanation of Equation (13) is provided in

the followings. For an edge point, it describes the distance
between p̂lk

i and its corresponding edge plk
a plk

b . For a planar
point, it describes the distance between p̂lk

i and its corre-
sponding plane which is formed by three points, plk

a , plk
b ,

and plk
c . Details of how to choose plk

a , plk
b , and plk

c can be
found in [8].

We solve Equation (12) using following iterated update
equations:

Kk, j = PkHT
k, j(Hk, jPkHT

k, j +Jk, jMkJT
k, j)
−1, (15)

∆x j = Kk, j(Hk, jδx j− f (−xbk
bk+1

�δx j)), (16)

δx j+1 = δx j +∆x j, (17)

where ∆x j denotes the correction vector at jth iteration. Hk, j

is the jacobian of f (−xbk
bk+1

� δx j) w.r.t. δx j. Note that, in
every iteration, we will find new matched edges and planes
to further minimize the error metric, followed by computing
new Hk, j, Jk, j, and Kk, j. When f (xbk

bk+1
) is below a certain

threshold, say at the n th iteration, we update Pk by

Pk+1=(I−Kk,nHk,n)Pk(I−Kk,nHk,n)
T +Kk,nMkKT

k,n. (18)

Using Equation (4), we are able to obtain the final xbk
bk+1

.
The raw distorted features can now be undistorted using the
estimated relative transformation.

Finally, we initialize the next state, xbk+1
bk+2

, with

[03,v
bk+1
bk+1

,q0,ba,bg,gbk+1 ], (19)

where q0 denotes identity quaternion. vbk+1
bk+1

and gbk+1 can

be computed by vbk+1
bk+1

= Rbk+1
bk

vbk
bk+1

and gbk+1 = Rbk+1
bk

gbk , re-
spectively. Note that, the covariances regarding the velocity,
biases, and local gravity remain in the covariance matrix,
while the covariance corresponding to the relative pose is
set to zero, i.e., no uncertainty for the robocentric frame of
reference itself.

4) State Composition: In the robocentric formulation,
every time when the update is finished, we need to update
the global pose, xbk

w , through a composition step as

xbk+1
w =

[
pbk+1

w

qbk+1
w

]
=

[
Rbk+1

bk
(pbk

w −pbk
bk+1

)

qbk+1
bk
⊗qbk

w

]
. (20)

5) Initialization: As described in Sect. III-C, the robo-
centric formulation can facilitate the initialization of the
filter state. Regarding the initial parameter settings, in our
implementation, (i) the initial acceleration bias and lidar-
IMU extrinsic parameters are obtained via off-line calibra-
tion, while the initial gyroscope bias is the average of the
corresponding stationary measurements, (ii) the initial roll
and pitch are obtained from the unbiased acceleration mea-
surements before moving, and (iii) the initial local gravity is
acquired via transforming the gravity vector represented in
navigation frame to current local frame using initial roll and
pitch from (ii).

IV. EXPERIMENTS

We now evaluate the performance of LINS in different
scenarios and compare it with LeGO [9], LOAM [8], and
LIOM [5], on a laptop computer with 2.4GHz quad cores
and 8Gib memory. All methods are implemented in C++
and executed using the robot operating system (ROS) [33]
in Ubuntu Linux. In the following experiments, the mapping
module of LINS is implemented by the mapping algorithm
proposed in LeGO [9]. Most of the previous works only
analyzed the performance of the final trajectory, i.e. the
odometry already refined by the map. However, we found
that the initial odometry, i.e. the odometry purely produced
by the odometry module, has great impact to the overall
performance. Therefore, we took both of them into account.
To distinguish these two odometries, we termed the odometry
refined by the map as map-refined odometry (MRO), and the
initial odometry as pure odometry (PO).

A. Indoor Experiment

In the indoor test, a parking lot was chosen as the
experiment area as shown in Fig. 4(a). We installed our
sensor suite on a bus as shown in Fig. 4(b), where a RS-
LiDAR-16 was mounted on the top and an IMU was placed
inside the bus. Fig. 5(a), 5(b), and 5(c) provide the results
from LINS, LeGO, and LOAM, respectively. Although we
do not have ground truth, we can still visually inspect that
LINS-PO’s trajectory can be precisely aligned with the MRO
trajectory (generally, MRO is almost drift-free indoors and
more accurate than PO), while the LeGO-PO and LIOM-PO
both have noticeable drifts in the yaw angle.

B. Large-scale Outdoor Environment

To verify generalizability and stability, experiments were
carried out in four outdoor application scenarios: city, port,
industrial park, and forest. Fig. 3 showcases some photos
of the environments and corresponding maps generated by
LINS. We measured the gap between the ground truth pro-
duced by a GPS receiver and the estimated position provided



(a) Port area (b) Industrial park area (c) Forest area

Fig. 3. Photos and corresponding maps (produced by LINS) of (a) a wide and open port area, (c) an industrial park with numerous buildings, trees, and
cars, and (d) a clean road through a forest area. LINS performs well in all tested environments.

TABLE I
REATIVE ERRORS FOR MOTION ESTIMATION DRIFT

Num. of Features Drifts of Map-Refined Odometry (%) Drifts of Pure Odometry (%)

Scenario Dist. (m) Edge Planar LOAM [8] LeGO [9] LIOM [5] LINS LOAM LeGO LIOM LINS

City 1100 85 2552 72.91 10.17 1.76 1.79 76.84 30.13 4.44 4.42

Port 1264 103 2487 2.16 3.35 1.40 1.56 4.64 8.70 1.72 2.75

Park 117 420 3598 19.35 1.97 2.61 1.32 26.50 26.08 13.60 7.69

Forest 371 99 2633 5.59 3.66 9.58 3.31 10.60 18.93 12.96 7.27

Parking Lot 144 512 5555 1.21 1.12 1.05 1.08 5.38 6.62 2.17 1.72

by each method, which indicates the amount of drift, and
then compare it to the distance traveled to yield a relative
drift. The experimental results are listed in Table I.

In summary, LINS performed well in all tested scenarios.
The detailed analysis for specific environments is conducted
below.

1) Port Experiment: We evaluated LINS in a port in
Guangdong. The sensor suite consisted of a Velodyne VLP-
16 lidar and an Xsens MTi-G-710 IMU fixed on the top
of a car. The ground-truth trajectory was offered by a GPS
module. We started recording data from a path surrounded
by containers. The car headed to a dock and then returned to
the original spot after traveling a distance of 1264 meters. It
is worth to mention that the containers would go in and out
incessantly changing the global map, which may undermine
the performance of MRO.

According to Table I, we find that LINS and LIOM present
the lowest drifts. The relative drift of LINS-MRO is 1.56%,
slightly higher than that of LIOM which is 1.40%, while the
relative drift of LINS-PO is just 2.75%. The results indicate
that combining IMU and lidar can effectively improve ac-
curacy. Even though the relative drifts of LOAM and LeGO

(a) (b)

Fig. 4. The sensor configuration for indoor tests. (a) Map of the parking
lot built by LINS. (b) Lidar installation. An IMU is stuck to the bus.

seems to be small, they may suffer from huge orientation
errors. Fig. 6(a) and 6(b) provide detailed trajectories and
maps from LeGO and LINS. Compared to the ground truths
(green lines), we find trajectories from LeGO (including
MRO and PO) turned to an erroneous direction around the
first turn. We can also visually inspect the deformation of
the map built by LeGO in Fig. 6(c). In contrast, LINS
exhibited good alignment with the ground-truth trajectory
and the resulting map presented high fidelity to the real-
world environment. Even in the first turn where features were
insufficient (only about 30 edge features available per scan),
LINS performed very well, which shows that our algorithm
is more robust to feature-less scenes.

TABLE II
RUNTIME OF THE LIO MODULE PER SCAN

Method City Port Park Forest Parking Lot

LIOM 143 ms 185 ms 201 ms 173 ms 223 ms
LINS 18 ms 19 ms 21 ms 20 ms 25 ms
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Fig. 5. Resulting trajectories in the indoor experiment of (a) LINS, (b)
LeGO, and (c) LOAM. We observe that MRO trajectories from all methods
look very similar, but their PO trajectories are totally different. The PO
trajectory from LINS aligns much better with its MRO trajectory than other
methods.
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Fig. 6. Estimated trajectories and maps from LeGO and LINS. Note that
the PO trajectories are drawn in blue lines, the MRO trajectories are drawn
by red lines, and the GPS ground truthes are drawn in green lines. We
see that the trajectories from LINS is close to the ground truthes, and the
resulting map has higher fidelity than that of LeGO.

2) Urban Experiment: We carried out the urban exper-
iment with the same sensor suite in Fig. 4(b). Positions
produced by a GPS receiver were used as ground truthes. It is
worth to mention that in this scene, the average edge feature
number is only 56 per scan, which is the lowest among all
tested scenarios.

We first take a glance at the output of LeGO and LOAM,
which can be seen in Fig. 7(b) and 7(c), respectively. We
observed that huge orientation errors occur in almost every
turns. Fig. 7(a) showcases the result of LINS when running
on the same dataset. The resulting trajectories show good
superposition with the real-world road, which confirms that
LINS can stably run even in the feature-less scenes. The
final MRO and PO drifts of LINS are 1.79% and 4.42%,
respectively, very close to that of LIOM which are 1.76%
and 4.44%, respectively. Moreover, in comparison to the
trajectory from LIOM as shown in Fig. 7(d) and absolute
trajectory error (ATE) as shown in Fig. 8(a) and 8(b), we
can see the performance of LINS is close to that of LIOM
in terms of accuracy. We analyze that LIOM benefits from
rotation-constrained refinement in the mapping step, which
results in higher accuracy in the MRO results.

C. Runtime Comparison

Table II compares the mean runtimes of the lidar-inertial
odometry module in LINS and LIOM. We see that LINS
is much faster than LIOM—LINS requires less than 30
millisecond in processing one scan, while LIOM always
requires more than 100 millisecond. In some extreme case
such as the parking lot where features abound, LIOM took up
to 223 millisecond while LINS only needed 25 millisecond.
The results demonstrate the real-time capacity of LINS is
much better than that of LIOM.

348.1 m

2
3
8
.6
m

(a) LINS’s Trajectory overlaid with Google Map for
visual comparison

(b) LeGO (c) LOAM (d) LIOM

Fig. 7. MRO trajectories generated by different methods in the urban
experiment, which are drawn in red lines.
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Fig. 8. Comparison of ATE bewteen LINS and LIOM w.r.t MRO and PO.

The most time-consuming parts in the LIO module of
LIOM are local-map-constraint construction and batch op-
timization, in which it maintains a local map over multiple
lidar scans and solves all relative states via MAP estimation.
The main reason behind LINS’s superior computational
speed is that it uses Kalman filter rather than batch MAP,
since Kalman filter implicitly reduces the dimension of the
optimization problem by factoring the batch solution in time
sequence and solving it in a recursive form [25]. The other
reason is that we only use point clouds from the previous
lidar scan for matching. In this way, although the used point
cloud is sparser than the local map built in LIOM, we can
still achieve accurate results with the aids of the IMU.

V. CONCLUSION

In this paper, we developed a lightweight lidar-inertial
state estimator for robot navigation. Using an iterated ESKF
with robocentric formulation, our algorithm is capable of
providing real-time, long-term, robust, and high-precision
ego-motion estimation under challenging environments. The
proposed algorithm is verified in various scenarios including
city, port, industrial park, forest, and indoor parking lot.



Experimental results demonstrate that LINS outperforms
the lidar-only methods and reaches comparable performance
with the state-of-the-art lidar-inertial odometry with a much
lower computational cost.
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