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a b s t r a c t 

This paper addresses robot trajectory tracking problem by using the learning from demonstration (LFD) 

method. Firstly, the trajectory tracking problem is formulated and the related previous works are intro- 

duced. Secondly, a trajectory tracking control policy using a three-layer neural network method, i.e., ex- 

treme learning machines (ELM), is proposed to minimize the real-time position and velocity errors. In the 

proposed method, the control algorithms are learnt from demonstrations directly such that the parame- 

ter adjusting problem in the traditional model-based methods is avoided. Besides, the trained controller 

has generalization ability to unseen situations which can be used to track different desired trajectories 

without any extra re-training. Thirdly, the stability analysis of the proposed control algorithm is provided 

and the corresponding parameter constraints are derived. Finally, the effectiveness and the generalization 

ability of the proposed control algorithms are demonstrated and discussed with simulation and experi- 

mental examples. 

© 2019 Elsevier B.V. All rights reserved. 
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. Introduction 

Recently, as the development of robotic technology, the intel-

igent robots have been widely used in both military and civil-

an areas such as target search, attack and rescue missions, indus-

rial applications and home services [1–3] . In both the industrial

nd service applications such as cutting, welding, assembling, hu-

an guiding and assistance, the robots are required to follow a

esired trajectory. Especially in the industrial area, the robot arm

s required to finish the trajectory tracking mission with high po-

ition and velocity accuracy. Besides, as the quality requirement

f the cutting and welding, the trajectory tracking should be fin-

shed under a given velocity. Therefore, the trajectory tracking not

nly requires a geometric path-following but also needs the speed-

ssignment at different waypoints [4,5] . In addition, the desired

rajectory should be pre-specified or estimated by some accurate

easurement sensors [6] . Thus, the trajectory tracking problem

ontains two steps, i.e., reference trajectory estimation and tra-

ectory tracking control. In this paper, we only focus on trajec-
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ory tracking control and assume the desired trajectory is clearly

nown. 

Many previous works of the close-loop trajectory tracking

ontrol strategies have been developed [7–11] . In these litera-

ures, the reference trajectory is known with negligible error

nd the real-time position/velocity is measured accurately. Then,

he position/velocity error-based close-loop servo system is built

o steer the robot tracking the reference trace. In the classical

lose-loop servo system, the robot (or called “plant”) nonlinear

ynamic modeling is necessary. With the accurate plant model,

he output of an appropriate controller can be transformed to

he desired robot state changes. In other words, two steps exists

n the classical close-loop control methods, i.e., system dynamic

odeling and control policy design. In [12] , a weight self-adaptive

ontroller using the neural network method was developed for a

obot position servo system. The weights will change automatically

ccording to the changes of the robot arm nonlinear dynamical

odel. Focused on the robot modeling parametric uncertainties,

he authors of [13] developed two different fuzzy logic control

lgorithms as the compensators for the structured/unstructured

ncertainties, e.g., frictions, external disturbances and payload

hanges, of the robot manipulator. The difference between these

wo fuzzy controllers is that one considered the pre-known uncer-
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tainties and the properties of robot dynamics whereas the other

one did not. In [14] , a modified model predictive path tracking

controller was designed and the trade-off between robustness

and accuracy was solved by selecting a so-called model predictive

control cost function. In [7] , the extreme learning machines (ELM),

a three-layer neural network method with randomly selected

input layer weight and hidden layer bias [15] , was applied to a

nonlinear trajectory tracking problem. Meanwhile, a sliding mode

controller was also designed and utilized with the ELM-based

close-loop controller to improve the robustness. In [8] , the ELM

method was employed to identify the uncertainties of the nonlin-

ear robot dynamics and another robust controller was developed

to compensate these uncertainties. A stable trajectory tracking

controller based on Gaussian radial basis function static neural

network method was proposed in [16] , and this controller contains

two stages using a switch logic to solve the problem caused

by system model uncertainties. Furthermore, the detailed robot

kinematics were analyzed using a new factorization method of the

Coriolis/centripetal matrix for the control algorithm designing. The

authors of [10] proposed a predictive control algorithm to solve

the constrained path tracking problems for the industrial robot

arm. The accurate robot dynamic model was known as the basic

condition before the controller designing. 

To summary, for these previous works, the robot dynamics

are very important to the control policy designing and the per-

formance would decrease once the actual plant model deviates

seriously. To avoid these problem, some model identification

strategies are required before the controller designing [17,18] and

system uncertainties compensation algorithms are also necessary.

In [19] , an adaptive evolutionary neural controller was developed

to solve the external disturbances and dynamic variations for

a serial pneumatic artificial muscle (PAM) robot. Furthermore,

an adaptive online displacement controller which combined the

feed-forward neural networks and the PID control strategies, is

proposed for the shape memory alloy (SMA) actuator control

in [20] . The methods in these two works solved the plant mod-

elling problem effectively. Another characteristic of these previous

studies is that the parameters of the controller should be tuned

appropriately based on the plant dynamics. While, to determine

these parameters is a tough task especially when the users have

limited knowledge about the controller. Consequently, the prob-

lem of how to make the robot trajectory tracking controller be

simple to implement has not been fully addressed. To simplify

the complex process of parameter adjusting in the control policy

design, the learning from demonstration (LFD) method, has been

proposed and utilized to the robotic areas. In the LFD methods,

demonstrations can be provided by an advanced controller or an

experienced human worker with no knowledge about control the-

ory, and the controller adjusts its parameters by itself from these

demos using machine learning algorithms. Based on the statistical

knowledge, different kinds of LFD methods were developed such

as using the artificial neural networks, support vector machines

(SVM), Gaussian mixture models regression and etc. [21–24] . These

learning-based methods can determine the appropriate parameters

by statistical knowledge from a large number of repeated demon-

strations. The most important advantage of these LFD methods

is that the users only need to implement the desired motions

repeatedly and the control parameters will be calculated automat-

ically. Consequence, neither the professional knowledge about the

controller designing nor the controller parameter adjusting skills is

required. Compared with the classical control strategies in the last

paragraph, the main advantage of the LFD method is the simplified

parameter adjustment. While the kinematic dynamics modeling is

still required which can be solved by the LFD strategies as well. 

In the tutorial paper [25] , the author concluded different Gaus-

sian mixture models (GMM) methods and the extension algorithms
f the GMM, which are applied for the service robots to adapt

iverse movements in the unconstrained environments. The com-

rehensive Matlab simulation codings about the GMM and their

xtensions are provided. Furthermore, some control algorithms

sing the LFD method have been proposed for the point-to-point

racking problem [26,27] . In [26] , the robotic point-to-point motion

ith preferred control policies was modeled as a nonlinear dy-

amical system (DS) and a control policy was developed to ensure

he states converging to the target point with global asymptotic

tability, and the proposed control policy is modeled by the GMM

egression method. Furthermore, the parameters of the control

olicy is determined using a novel method which is called Stable

stimator of Dynamical Systems (SEDS) with the consideration

f stability constraints. In addition, the proposed method was

lso extended to a trajectory tracking problem by an experiment

ith self-interacting motions. The DS method was also applied

y Khansari-Zadeh and Billard [28] to describe the relationship

etween the desired point-to-point state changes and the control

olicy, and thus the detailed robot kinematics were unnecessary

o be considered separately. By focusing on the control Lyapunov

unction designing, the global asymptotic stability of the nonlinear

S was guaranteed. In [29] , the reach and grasp problem, i.e., a

oint-to-point motion, became more complex with the consider-

tion of the coupling problem between the hand movements and

nger motions. A controller considering the coupled dynamical

ystem was developed and guaranteed the robot fast adaptation

or perturbations with zero delay. The authors of [27] also focused

n the point-to-point reaching problem in [26] , but they proposed

 fast, stable and simple LFD method based on the extreme learn-

ng machines. Thus, the time-consuming drawback of the SEDS is

voided by using the ELM-based method. To extend the learning-

ased point-to-point control method into trajectory tracking

roblem, the reference can be assumed as a set of point-to-point

otions and we just need to steer the robot arrive to all the points

ne-by-one sequentially. However, the tracking performance is not

mooth because the zero-velocity constraint was not considered

or required in the previous works [26–28] . In [30] , a potential

unction construction strategy based on learning method was de-

eloped for a trajectory following problem. The reference trajectory

as perfectly followed by their proposed method and the stability

as simple to satisfied. However, if the desired trace is changed, all

he controller parameters should be re-determined and the track-

ng velocity is uncontrollable. Besides, the differences between tra-

ectory following and trajectory tracking problem were introduced

n [5] , and we focus on the trajectory tracking problem in this pa-

er. Consequence, the previous works cannot be applied directly to

rovide satisfied performance in the trajectory tracking problem. 

Compared with the previous works, two key contributions are

ade in this paper. Firstly, a learning-based trajectory tracking

ontrol policy is derived for different applications using a simple

hree-layer neural network method, i.e., ELM algorithm. The con-

rol algorithm is learnt from demonstrations directly such that the

arameter adjusting problem in the existing modeling-based meth-

ds [13,18] is avoided. Therefore, the proposed method is simple to

mplement with the ability of generalization. The trajectory track-

ng controller is learnt by only using the position errors of the

emonstrations. Besides, as the proposed method is to minimize

he errors, the control performance is not affected by the geome-

ries of the desired trajectory, e.g. self-interacting trajectory. Sec-

ndly, the trajectory tracking problem is solved by the proposed

earning-based method which can provide smooth and accurate

erformance, and it is different from the existing point-to-point

ontrol strategies [26,27] . More specifically, compared with [27] ,

n this work the point-to-point problem is extended into accurate

rajectory tracking problem. In the previous method, the velocity

as not considered at all and the position state was the controller
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Fig. 1. Diagram of the classical close-loop trajectory tracking system for a robot control problem. 
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nput. In this paper, the velocity is carefully considered both in

he control policy design and stability analysis. In addition, the

lobal asymptotic stability analysis and the convergence of posi-

ion and velocity errors are provided. The corresponding parame-

er constraints are derived. According to the simulation results, the

ffectiveness and the characteristics of the proposed method are

emonstrated and discussed. 

The rest of this paper is structured as follows. Section 2 is the

roblem formulation. The trajectory tracking control policy based

n learning from demonstration method is proposed in Section 3 .

ection 4 provides the stability analysis of the proposed control

lgorithm. Simulation and experimental studies are presented in

ection 5 . Section 6 draws the conclusion and discussion. 

. Problem formulation 

In this paper, we consider using a robot, e.g. end effector of in-

ustrial robot arm, wheeled mobile robot, quad-rotor flying robot,

o imitate a real-time geometric trajectory. The reference trajectory,

.g., in the 3-dimensional space, takes the form 

r = [ x r (t) , y r (t) , z r (t)] T (1)

here T denotes the matrix transposition and the reference state ξr 

s a variable respect to the time t and 

˙ ξr is the reference velocity

t ξr . Define the actual position of the robot as 

= [ x (t) , y (t) , z (t)] T (2)

nd the velocity as ˙ ξ. To make the the robot follow the refer-

nce trajectory smoothly and perfectly, both the position and ve-

ocity need to equal the reference values. Besides, in some practi-

al applications such as cutting and welding, the velocities at the

aypoints along the trajectory may impact the production qual-

ty significantly. Therefore, it is necessary to realize the trajectory

racking with the reference velocities. In addition, for a pre-given

nd bounded trajectory tracking problem (or called reappear the

eference trajectory) which does not have tracking time require-

ent, only the position state need to exactly equal the reference

alues sequentially. However, without considering the velocity will

eet the non-smooth problem as appeared in the point-to-point

ethods. Therefore, the smooth velocity changes are also required

ut they do not need to precisely equal the reference values and

an be defined as the users’ requirements. Furthermore, the pro-

osed control policy can also be applied for this degenerated prob-

em. In order to simplify the derivation process in the later sections

f this paper, the position, velocity and acceleration errors take the

orms 

e = ξ − ξr ˙ e = 

˙ ξ − ˙ ξr ë = ξ̈ − ξ̈r . (3) 

herefore, the objective of the reference tracking problem is to de-

ign an appropriate control law to minimize the errors at every

ime instant. For simplification reason, the time index t are ignored

n ξr , ξ, e and their derivatives. The diagram of the classical close-

oop trajectory tracking system is depicted in Fig. 1 . 
In order to make the problem analyzable and simple to analyze,

wo assumptions are proposed. 

ssumption 1. The given reference trajectory is reachable which

as considered the position constraint of the robot. For example, a

-DOF robot arm cannot reach all the positions around the robot

ase. For another example, if the maximum length of the robot

rm is 2 m, it can never reach a 10 m away target position without

oving its base. 

ssumption 2. The robot (or robot arm end effector) is considered

s a mass point such that the torques and attitude of the robot are

gnored. More specifically, we only focus on trajectory tracking and

rying to expect the mass point matching the reference trajectory. 

. Trajectory tracking control policy 

In the previous works, the machine learning methods are ap-

lied to build and fit the accurate plant model in order to design a

pecific control law using variant control strategies. In this paper,

e develop a control algorithm based on the LFD method and the

S strategy. Thus, in the proposed method, neither the robot dy-

amic model information nor the separated control law designing

s required. In the proposed method we first make several manu-

lly demonstrations started from different original positions for the

obot to follow up a reference trajectory with the ideal velocity

hanges. Also, the robot position/velocity information and the er-

ors are recorded. Second, by using the machine learning methods,

he control law can be obtained which should be a function re-

pect to the states or state errors. Third, the robot starts from any

osition and reproduces the trajectory tracking using the trained

ontrol policy. 

We extend the point-to-point method in [27] into a trajectory

racking problem. The desired trajectory can be perfectly tracked

y controlling the real-time robot velocity. Furthermore, we will

roof that both the real-time position and velocity states can con-

erge to the reference trajectory using the proposed method. 

The control policy is modeled with a first-order DS [27,28] fo-

using on the state error in the Cartesian coordinate which takes

˙ e = f ( e ) (4) 

ombine (4) and the robot transformation function S(·) , the con-

rol policy of the actuator system, defined as u takes 

u = S −1 ( f ( e ) ) . (5) 

ote that S(·) is a function which firstly computes the corrected

ositions and secondly transforms the corrected positions into the

orrected actuator commands. More specifically, once the users ac-

uire the state error and f ( e ), for the robot arm or the mobile

obot, the detailed actuator behavior is calculated through S(·) au-

omatically. In this paper, the identification of S(·) is not the prob-

em we concerned and many previous methods have been devel-

ped already [31] . Thus, S(·) is assumed as a mapping function
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Fig. 2. Diagram of the learning-based trajectory tracking control system. 
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Fig. 3. Activation function g ( s ) and its derivative g ′ ( s ). 
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which can be different depended on the types of the robots and it

will not impact the learning-based control policy design. 

As introduced in the literature, different LFD methods such as

the artificial neural network (including the ELM), GMM and SVM,

can all be utilized to develop the control policy, fitting the accurate

expression of f ( · ). Because the ELM method has the advantages

of fast training speed and simple to implement [27] , we choose

it to train the controller. The diagram of the this learning-based

trajectory tracking control system is shown in Fig. 2 . More specifi-

cally, the designed control system consists of two parts, i.e., high-

level and low-level parts. In the high-level part, the controller is

trained by multiple desired demonstrations off-line firstly. Then,

the revised end-effector command will be calculated by the trained

controller with the real-time actual and reference states. Next, the

robot inner slave system will transform and execute the revised

end-effector command to the corresponding movements of all the

motors. Finally, the real-time robot end-effector states are mea-

sured by the installed sensors and the close-loop control system

is built. 

Based on the ELM [22] and the DS [28] methods, the control

policy of the robot can be written as 

u = S −1 ( ̇ e ) = S −1 

( 

N ∑ 

i =1 

βi g 
(
w 

T 
i e + b i 

)) 

(6)

where N is the number of the hidden nodes, u is a variable dimen-

sional vector which is determined by the actual actuator mechani-

cal structure. g ( · ) is the activation function, 

b = [ b 1 , b 2 , . . . , b N ] 
T 
N×1 (7a)

 = [ w 1 , w 2 , . . . , w N ] d×N (7b)

β = [ β1 , β2 , . . . , βN ] d×N (7c)

are the hidden layer bias, the input weight and the output

weight, respectively. With the control policy, the final acquired

control command can correct the derived position. Note that

( w 1 , w 2 , . . . , w N ) are the column vectors and d denotes the state

dimension, e.g., d = 3 for the 3-dimensional problem. Now, the ob-

jective is to determine the parameters b , W and β. Thus, a clear

mathematical relationship between the inputs e and the output u

will be built. These parameters will be determined by the train-

ing process using multiple demonstrations. Note that the proposed

control policy is based on the state errors which is very differ-

ent from the state-based method in [27] for the trajectory tracking.

Therefore, the required demonstration data is also different. 
Based on [22] , b and W in (6) are initialized with invariable

andom constants. The number of the total data points in the

emonstrations is M . Then, the output weight β can be calculated

y solving the tracking least-square problem 

min 

β

∥∥∥D β
T − S( u o ) 

∥∥∥ (8)

here 

D = 

⎡ 

⎢ ⎣ 

g 
(
w 

T 
1 e 1 + b 1 

)
· · · g 

(
w 

T 
N e 1 + b N 

)
. . . 

. . . 
. . . 

g 
(
w 

T 
1 e M 

+ b 1 
)

· · · g 
(
w 

T 
N e M 

+ b N 
)
⎤ 

⎥ ⎦ 

M×N 

(9)

s the hidden layer output matrix. The outputs of the M data points

re denoted by u o = [ u 1 , u 2 , ..., u M 

] T . As W and b are constants, D

s also fixed. Therefore, the solution of the minimization problem

n (8) becomes 

ˆ β = D 

+ S( u o ) (10)

here D 

+ is the Moore–Penrose generalized inverse of D [22] . For

he continuous and continuously differentiable activation function

 ( · ), it should satisfy the tracking conditions to guarantee the ef-

ectiveness of the ELM 

(0) = 0 (11a)

˙ 
 (s ) > 0 , s � = 0 . (11b)

Consequently, we choose 

g(s ) = 

2 

1 + exp ( −2 s ) 
− 1 and g ′ (s ) = 

4 exp ( −2 s ) 

[1 + exp ( −2 s )] 2 
(12)

s the activation function and its derivative. Fig. 3 shows the func-

ions of g ( s ) and g ′ ( s ). Note that different activation function can

e chosen, e.g., sigmoid function, tanh function and smooth-step

unction. 

Based on the data ( e 1 , ..., e M 

, u 1 , ..., u M 

) of the M demonstration

ata points, (10) and (12) , the parameters in (6) can be regressed

nd determined. Thus, for a new input e , the corresponding output

 is acquired which can be utilized for robot state correction. 

. Stability analysis 

In order to guarantee the trajectory tracking system stable, the

yapunov stability method is applied. More specifically, to realize

he trajectory tracking stable and accurate, both the position and

elocity errors c = [ e T , ̇ e 
T 

] T are required to converge to zeros. In

he Lyapunov stability theorem, the system states c = [ e T , ̇ e 
T 

] T are
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Fig. 4. The work flow diagram of the proposed algorithm. 
lobally asymptotic stable at the point c � = 0 if a continuous and

ontinuously differentiable Lyapunov-candidate-function (LCF) V ( c )

atisfies [32] 

 ( c ) > 0 , ∀ c ∈ R 

2 d and ∀ c � = c � (13a) 

˙ 
 ( c ) < 0 , ∀ c ∈ R 

2 d and ∀ c � = c � (13b) 

 ( c � ) = 0 (13c) 

lim || c ||→∞ 

V ( c ) = ∞ . (13d) 

From (13d) , the state may start from a randomly unbounded

oint and if (13a) and (13b) are satisfied, the state will definitely

onverge to the global stable point (13c) . 

To guarantee the system globally asymptotically stable, the re-

uirements in (13) should be always satisfied when the state errors

tart with any values. Consequence, the trajectory tracking system

ith any state errors will always converge to the desired trace. 

heorem 1. When the parameters in the proposed control policy

6) satisfy, ∀ i ∈ 1 , 2 , . . . , N

i w 

T 
i ≺ 0 (14a) 

 i = 0 , (14b) 

here ≺0 denotes the negative definiteness of a matrix, the trajec-

ory tracking system is globally asymptotically stable (both the posi-

ion and velocity errors can converge to zeros). 

roof. We design the LCF V ( c ) including both the position and ve-

ocity errors as 

V ( c ) = 

1 

2 

e T e + 

1 

2 

˙ e 
T 

˙ e . (15) 

hus, V ( c ) obviously satisfies (13a) , (13c) and (13d) . Consequently,

e have 

˙ V ( c ) = e T ˙ e + 

˙ e 
T 

ë . (16) 

q. (16) is a function including three variables, i.e., e , ˙ e and the

nknown acceleration error ë . Combined with (6) , the derivative of

˙ 
 is computed as 

ë = 

d 

[
N ∑ 

i =1 

βi g 
(
w 

T 
i 

e + b i 
)]

d t 

= 

N ∑ 

i =1 

βi 

d 

[
g 
(
w 

T 
i 

e + b i 
)]

d 

(
w 

T 
i 

e + b i 
) w 

T 
i ˙ e . 

(17) 

hen, all the unknown terms in (16) can be eliminated by replacing

¨
 by (17) and then (16) becomes 

˙ V ( c ) = e T ˙ e + 

˙ e 
T 

N ∑ 

i =1 

βi 

d 

[
g 
(
w 

T 
i 

e + b i 
)]

d 

(
w 

T 
i 

e + b i 
) w 

T 
i ˙ e . (18) 

ubstituting the expression of ˙ e from (6) yields 

˙ V ( c ) = e T 
N ∑ 

i =1 

βi g 
(
w 

T 
i e + b i 

)
+ 

˙ e 
T 

N ∑ 

i =1 

βi 

d 

[
g 
(
w 

T 
i 

e + b i 
)]

d 

(
w 

T 
i 

e + b i 
) w 

T 
i ˙ e . (19) 

or simplification reason, we can rewrite 
d [ g ( w 

T 
i 

e + b i ) ] 
d(w 

T 
i 

e + b i ) 
=

 

′ (
w 

T 
i 

e + b i 
)

and it is the first-order derivative of the activa-

ion function which is always be positive. By using the mean-value
heorem [33] , (19) becomes 

˙ V ( c ) = e T 

{ 

N ∑ 

i =1 

βi 

[
g(0) + g 

′ 
(s i )( w 

T 
i e + b i ) 

]} 

+ 

˙ e 
T 

N ∑ 

i =1 

βi g 
′ (

w 

T 
i e + b i 

)
w 

T 
i ˙ e 

(20) 

here g 
′ 
(s i ) is the first-order derivative of g ( s i ), and s i ∈ (0 , w 

T 
i 

e +
 i ) or s i ∈ ( w 

T 
i 

e + b i , 0) . As defined in ( 11 a), g(0) = 0 , (20) be-

omes 

˙ V ( c ) = e T 
N ∑ 

i =1 

βi g 
′ 
(s i )( w 

T 
i e + b i ) + 

˙ e 
T 

N ∑ 

i =1 

g 
′ (

w 

T 
i e + b i 

)
βi w 

T 
i ˙ e 

(21) 

nd equation (21) can be rewritten as 

˙ V ( c ) = e T 
N ∑ 

i =1 

g 
′ 
(s i ) βi w 

T 
i e ︸ ︷︷ ︸ 

1 ©

+ e T 
N ∑ 

i =1 

g 
′ 
(s i ) βi b i ︸ ︷︷ ︸ 
2 ©

+ ̇

 e 
T 

N ∑ 

i =1 

g 
′ (

w 

T 
i e + b i 

)
βi w 

T 
i ˙ e ︸ ︷︷ ︸ 

3 ©

. 

(22) 

urthermore, both the derivatives, i.e., g 
′ 
(s i ) and g 

′ (
w 

T 
i 

e + b i 
)
, of

he activation function are always positive. 

Combined with the conditions in (14) of the proposed Theorem,

 i ∈ 1, 2, ..., N , 

i w 

T 
i ≺ 0 (23a) 

 i = 0 , (23b) 

˙ 
 ( c ) is guaranteed be negative definiteness with any values of

 and 

˙ e (except e = 0 , ˙ e = 0 ), i.e., 1 © ≺ 0 , 2 © = 0 and 3 © ≺ 0 are

atisfied. In other words, ˙ V ( c ) can be guaranteed negative semi-

efiniteness and 

˙ V ( c ) = 0 only when e = 0 , ˙ e = 0 . Therefore, the

onstraints in Theorem can guarantee the globally asymptotic

tability. �

To conclude, the proposed control policy designing with global

symptotic stability is a constraint-optimization problem that 

min 

β

∥∥∥D β
T − S( u o ) 

∥∥∥ (24) 

ubject to, ∀ i ∈ 1, 2, ..., N , 

i w 

T 
i ≺ 0 (25a) 

 i = 0 . (25b) 

As w 

T 
i 

and b i are randomly selected, the solution of the opti-

ization problem with the constraints in (25) is available. Last but
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Table 1 

The work flow of the proposed algorithm. 

Part 1: Controller training 

(1) Demonstration design. We suggest using the well-adjusted typical control 

strategy to track a nonlinear trajectory multi-times from different start 

positions with desired performance as the demonstrations. 

(2) Demonstration data collection. S( u ) (the corrected high-level control 

commands, e.g., the revised velocity commands), e and the reference 

trajectory data ˙ ξr , ξr at each time instant are recorded. 

(3) Controller training with considering the stability constraints. Randomly 

select w i and define b i = 0 . Substituting the output and input, i.e., 

S( u ) and e , into eq. (24) with constraints in eq. (25) yields the final 

parameters βi . 

(4) The controller in eq. (6) is acquired. 

Part 2: Reference trajectory tracking. 

(1) Based on the reference trajectory, calculate the real-time position error. 

(2) Corrected velocity law calculation ˙ ξr + ̇

 e using the trained controller f ( e ). 

(3) Give the velocity law to the robot. Final control law transmission by the 

robot embedded system S −1 ( f ( e )) = u , i.e., transform the revised velocity 
˙ ξr + ̇

 e control laws into robot actuator commands. 

(4) Control law execution by the robot and get new position measurements. 

(5) Go back to (1) of Part 2 for the next time instant. 

Fig. 5. Trajectories of the 7 demonstrations and the reference in example 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Simulation results using the proposed algorithms started from different po- 

sitions. The actual trajectories using method 1, 2 and 3 are depicted by the blue, red 

and light blue lines. The same start point is indicated with ’ ◦’. The desired trajectory 

is indicated by the green line starting from 

∗ . 
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not least, this constraint-optimization problem is solved by using

the data of multiple demonstrations. More specifically, the “fmin-

con” function in the Matlab using the demonstrations’ data with

the programmed constraints in (26) can be applied to determine

the controller parameters. Finally, as the parameters, i.e., βi , w i , b i ,

are determined, the control algorithm is obtained. 

To clearly understand the proposed method, the work flow of

the proposed algorithm is listed in Table 1 and Fig. 4 . 

5. Simulation and experimental studies 

The proposed control policy is evaluated in Matlab via two

sets of simulations, i.e., 2D and 3D examples. The first example

uses the proposed algorithm to follow different human handwrit-

ing trajectories on the 2D plane. Some trajectories in the LASA

human handwriting library [26] are referred as the desired target

traces. To follow these desired trajectories, i.e., minimizing the po-

sition and velocity errors at each time instant, some new demon-

strations are manually produced and the corresponding data are

recorded for the training. Note that in the practical applications,

these new demonstrations can be made by actual human writing

demonstrations, or obtained from multiple well-adjusted advanced

controllers. Second, a desired nonlinear trajectory in the 3D space

is produced in the Matlab and multiple tracking demonstrations
tarting with different initial positions are built. Based on these

emonstrations, the proposed control algorithms are acquired by

he training process. Then, the different desired trajectories are

racked from different start points using the trained controller. 

The performance of the proposed control policy is compared

ith the sliding mode control (SMC) [34] method in a trajectory

racking problem. We have two reasons for not using a previ-

us learning-based method as a comparison. First, the point-to-

oint learning-based methods [26,27] cannot be used for trajectory

racking. If we force to use the methods of [26,27] to the track-

ng problem, the performance is poor and not comparable. Second,

nother learning-based method in [30] is also a parameter-

ependent strategy which has poor generalization to unseen sit-
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Fig. 7. Simulation comparisons of example 2. 
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Fig. 8. Simulation comparisons of example 3. 

Fig. 9. Simulation comparisons of example 4. 
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ations. Therefore, we need to chose another nonlinear control

ethod, i.e., SMC. 

Furthermore, a typical neural model-based tracking method is

lso developed as another comparison. Considering the method

n [7] , the three-layer neural network method is utilized to model

he different shape trajectories and then the model-based neural

ontroller is designed. As the different shape reference trajectories

ave strong nonlinearity, the model-based neural method com-

ined with a SMC controller is applied to design a feedforward

ontrol strategy. More details were introduced in [7] . Similar to the

MC method, to track different shape trajectories, the model-based

eural controller also need to re-adjust its parameters. Theoreti-

ally, both the SMC and the model-based neural controllers have

imited generalization to different situations. Note that in the sim-

lations, the low-level robotic mechanical dynamical model S(·) is
gnored and we only consider the high-level DS control. In the pro-

osed algorithms, we set L = 50 and each term of w i is randomly

elected in (−1 , 1) for the proposed control policy. For simplifica-

ion reason, we define the proposed strategy as method 1 (M1),

he SMC method as method 2 (M2) and the model-based neural

ethod as method 3 (M3). 

In the trajectory tracking problem, the geometric similar-

ty [26,27] is not enough to evaluate the performance of the

ontrol policy. Refer to [35] , the position/velocity bias norm at

ach measurement time instant and the root-mean-squared-error

RMSE) are utilized which have 

ias norm k = ‖ 

e k ‖ 1 or ‖ ̇

 e k ‖ 1 (26a) 

MSE = 

√ 

1 

K 

K ∑ 

k =1 

‖ 

e k ‖ 

2 or 

√ 

1 

K 

K ∑ 

k =1 

‖ ̇

 e k ‖ 

2 
(26b) 

here ‖ · ‖ 1 and || · || are the L 1 norm and Euclidean norm. Here K

enotes the total number of measurements. 
.1. 2D Trajectory tracking 

In the 2D human handwriting simulations, the time intervals

etween different measurements of writing different letters are

ariable and each writing example contains 10 0 0 measurements.

he measurements of a desired trajectory include the reference

osition, velocity and acceleration information. Four examples of

racking four different trajectories are provided. In example 1, the

roposed method is to follow a “Snake” trajectory; example 2 is to
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Fig. 10. Experimental setup. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11. The experiment process using the proposed algorithm. (a) Begin to work 

from the initial position, (b) move to the start position, (c) track the reference tra- 

jectory, (d) move back to the initial position, (e) the final trajectory. 
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follow a “W” trajectory; example 3 is to follow a “G” trajectory and

example 4 is to follow an “Angle” trajectory. The proposed meth-

ods are state-error-based and thus it is not necessary to train four

controllers for each example specially. The trained controller using

the proposed method can be applied for any new reference tra-

jectory tracking because of the generalization to unseen situations.

Therefore, the controller trained from the example 1’s demonstra-

tion data will be applied directly to track different shape trajecto-

ries in example 2 to 4. 

Based on the reference trajectory of example 1, seven demon-

strations with detailed state information are produced from the

Simulink and the trajectories are shown in Fig. 5 . Note that the

performance of the trained controller is impacted by the demon-

strations. However, it is hard to find a standard rule to evalu-

ate the quality of the demonstrations. In the simulation, we se-

lected the tracking data of using multiple well-adjusted controllers

(performance is shown in Fig. 3 ) as the demonstrations. In other

words, the different demos started from different positions using

different groups of controller parameters to converge the refer-

ence trajectory fast with small overshoot. In summary, the suc-

cessfully tracked demonstrations can have better tracking quali-

ties, e.g., higher accuracy or faster reaction speed and they can

improve the quality of the learnt controller. After the training pro-

cess, the parameters in the proposed method are determined and

then we use the learned controller of M1 to follow the different

desired trajectories in the four examples with different start po-

sitions. For the sake of fairness, the proposed method (M1), the

SMC algorithm (M2) and the model-based neural algorithm (M3)

all use their same controller parameters for the four different ex-

amples. Specifically, the M2’s controller parameters are adjusted

aiming at “Snake” tracking problem. The controller parameters in

M3 are trained and adjusted using the previous 7 demos’ data of

tracking the “Snake” trajectory. In the training, the position errors,

corrected velocities and the corresponding velocity errors, i.e., e ,
˙ ξcorrect , ˙ e = 

˙ ξcorrect − ˙ ξr , at all the time instants are applied as the

inputs and outputs. 

For example 1, the results using the different methods are

shown in Fig. 6 . In the first reproduced “Snake” tracking (Case 1),

the actual start point is same as the desired original position.

Therefore, the reproduced trajectory using the different controllers

of M1, M2 and M3 are very similar to the desired reference tra-
ectory and they look like a perfectly repeating process. Note that

he relative poor velocity bias performance of M3 in case 1 of ex-

mple 1 can be improved by providing more demonstration data.

hile for fairness reason, we only uses the 7 demonstrations in

ig. 5 . M1 and M2 both perform well in examples 2–4 under case

 which are shown in Figs. 6–9 and Tables 2 and 3 . As the ini-

ial state errors are very small, both controllers can easily become

table. When the start position and desired trajectory change,
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Fig. 12. Experimental results of the proposed algorithm using the KUKA robot arm. The trajectory of the proposed method is depicted by the blue line. The start point is 

indicated with ’ ◦’. The reference trajectory is indicated by the green line starting from 

∗ . (a) (b) trajectories, (c) position bias, (d) velocity bias. 

Table 2 

The position RMSE performance of the 4 examples, unit: mm. 

M1 of Ex.1 M2 of Ex.1 M3 of Ex.1 M1 of Ex.2 M2 of Ex.2 M3 of Ex.2 

Case 1 0.0608 0.0798 0.1507 0.0615 0.0730 1.5909 

Case 2 3.2434 3.2194 2.3923 3.9781 4.2148 4.0605 

M1 of Ex.3 M2 of Ex.3 M3 of Ex.3 M1 of Ex.4 M2 of Ex.4 M3 of Ex.4 

Case 1 0.0730 0.0689 1.4147 0.0718 1.3748 7.7524 

Case 2 4.2148 7.1486 5.5540 3.5304 44.7060 8.1550 

Table 3 

The velocity RMSE performance of the 4 examples, unit mm/s. 

M1 of Ex.1 M2 of Ex.1 M3 of Ex.1 M1 of Ex.2 M2 of Ex.2 M3 of Ex.2 

Case 1 0.6352 0.5891 8.8092 0.3545 0.4140 7.6332 

Case 2 8.0924 13.4608 13.3317 8.4321 14.4344 49.7285 

M1 of Ex.3 M2 of Ex.3 M3 of Ex.3 M1 of Ex.4 M2 of Ex.4 M3 of Ex.4 

Case 1 0.4811 0.2818 6.1428 0.3808 6.7271 19.5985 

Case 2 7.2864 24.9895 15.1115 6.3285 65.3632 60.4287 
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Fig. 13. Trajectories of the 7 demonstrations and the reference in example 6 and 7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 14. Simulation results of example 6 using the proposed algorithm started from 

different positions. The actual trajectory is depicted by blue and red dashed lines 

using method 1 and 2, and the same start point is indicated with ’ ◦’. The desired 

trajectory is indicated by the green dashed line starting from the red ∗ . 
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e.g., tracking “Angle”, the tracking performance of M2 decreases

obviously and even diverges. To improve the performance, the

parameters of the SMC algorithm must be re-adjusted respect to

the changed trajectories. Furthermore, the model-based method,

i.e., M3, shows limited performance in examples 2, 3 and 4. This is

because the trained controller of M3 only using “Snake” shape de-

mos cannot adapt the different reference trajectory tracking tasks.

Consequence, the controller parameters require the re-adjustment

and re-training process. The proposed method can be understood

as a unified controller of multiple different-parameterized SMC

controllers. The generalization of M1 to unseen situations is ob-

viously validated by the performance of the four examples. In ad-

dition, the position error converges faster than the velocity. The

velocity errors of the different methods have a similar sudden im-

pulse at the last several time instants because the desired trajec-

tory suddenly stopped at the last point. 

Furthermore, we use the proposed method to track a desired

reference trajectory including self-interacting behaviours to vali-

date the effectiveness of using error-based strategy. In this more

complex circumstance, after the “W” shape tracking, the robot

keeps moving along the “G” shape trajectory and thus the cross

movements appear. We refer this example as example 5. The KUKA

LBR iiwa 7 R800 industrial robot arm is applied to track this mix-

ture trajectory. This type of robot arm has high control accuracy

and fast reaction ability which can transform the high-level control

laws into accurate movements. The experiment setup is shown in

Fig. 10 and the robot arm is online controlled by the Matlab using

a KUKA-Matlab communication socket [36] . A three-finger manip-

ulator was installed at the end-effector holding a pen to write the

trajectory onto a white board. First, the reference trajectory was

written by a black pen on the white board using the reference

data. Next, we changed the robot end-effector start position de-

viated from the desired original state and the new trajectory was

written by a blue pen using the proposed algorithm. Note that the

LASA trajectory data was shifted to the appropriate space for the

robot arm to write the letter onto the white board. The experiment

process was shown in Fig. 11 . In addition, the corresponding real-

time positions and time indexes were recorded by the KUKA robot

sensors and the performance of the proposed method is shown in
ig. 12 . It can be seen that the position tracking bias converges

o small values fast. The velocity tracking bias always exists and

his is caused by the slight execution time deviation and noise

roblems in the real robot system. For example, we find that the

xecution time for each step of the real robot system has about

0.0 0 05s error. Thus, in different steps the robot may spend dif-

erent times to guarantee the achievements of the given positions.

lso, as the velocity is calculated by the position difference and

ime, the differential noise exists. But, as the measurement index

ncreases, the velocity bias shows a downward trend to zero. The
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Fig. 15. Simulation results of example 7 using the proposed algorithm started from 

different positions. The actual trajectory is depicted by blue and red dashed lines 

using method 1 and 2, and the same start point is indicated with ’ ◦’. The new de- 

sired trajectory is indicated by the green line starting from 

∗ . The original reference 

trajectory is depicted by the black line. 
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Table 4 

The position RMSE performance of example 6 and 7. 

M1 of Ex. 6 M2 of Ex. 6 M1 of Ex. 7 M2 of Ex. 7 

Case 1 (cm) 0.0726 0.0853 0.0313 80796 

Case 2 (cm) 1.2602 0.3318 1.2603 80791 

Table 5 

The velocity RMSE performance of example 6 and 7. 

M1 of Ex. 6 M2 of Ex. 6 M1 of Ex. 7 M2 of Ex. 7 

Case 1 (cm/s) 0.4616 0.0289 0.3530 1.7466 

Case 2 (cm/s) 0.8434 0.1586 0.7642 2.7974 
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osition and velocity RMSEs of the experiment are 0.8046 mm and

.7954 mm/s, respectively. 

.2. 3D trajectory tracking 

In the 3D trajectory tracking simulation, the desired trajectory

s mixed with the sine and straight line movements. The desired

ovements along the three different axes are independent and we

et 

 r (t) = 

(20 − t) π

60 

sin ( 1 . 5 t + 1 ) − 3 

 r (t) = 3 t + 1 

f t ≤ 10 s, z r (t) = 1 + sin 

1 

5 

πt 

therwise z r (t) = 1 + 5 

(
t 

10 

− 1 

)
. (27) 

ith the corresponding velocities and accelerations. We assume

 = 20 s and the measurement updates after 0.05s which means

 = 0 . 05 , 0 . 1 , 0 . 15 ... s and K = T / 0 . 05 = 400 measurements exist.

even smoothly and manually produced demonstrations started

rom different positions to track the same desired trajectory are

rovided. The demonstrations and the desired trajectory are shown

n Fig. 13 . Similar to the 2D examples, M1 and M2 are applied in

his circumstance and the reproduced tracking results using are in-

icated as example 6 with two cases and shown in Fig. 14 . The ef-

ectiveness of the proposed method for a 3D nonlinear trajectory

racking has been validated. Furthermore, in the reproduced simu-

ations, we change the desired trajectory to 

 r (t) = 

π

3 

sin ( 1 . 5 t + 1 ) − 3 

 r (t) = t + 1 

f t ≤ 10 s, z r (t) = 1 + sin 

1 

5 

πt 

therwise z r (t) = 1 + 2 

(
t 

10 

− 1 

)
(28) 
nd still use the same trained controller to follow the new trace

rom different initial positions. This example is to validate the gen-

ralization ability of the proposed method which is scalable to a

ifferent reference trajectory. This simulation is considered as ex-

mple 7 and the results are shown in Fig. 15 . From Fig. 15 we

an see that the proposed algorithm has the generalization abil-

ty (or strong robustness) to track different desired trajectories.

ote that the performance of the trained controller can be im-

roved by providing more high quality demonstrations. The SMC

ethod only uses one group of parameters for the case 1 of ex-

mple 6. Even it works well in some cases, it performs badly in

he other circumstances. Therefore, the controller parameters must

e re-adjusted and M2 has limited generalization ability. Besides,

he position RMSE performance of example 6 and 7 is listed in

able 4 . 

. Conclusion and discussion 

We have proposed a control policy based on the LFD method

o solve robot trajectory tracking problem. Firstly, the trajectory

racking problem was formulated. Secondly, a trajectory tracking

ontrol policy was derived using a simple three-layer neural net-

ork method, i.e., ELM, by minimizing the real-time state errors.

n the designed controller, the input was only the position er-

or, while the outputs were the desired velocity and the corre-

ponding robot movement command. Furthermore, the parame-

er adjusting problem in the traditional model-based methods was

voided and the control algorithm was learnt from demonstra-

ions directly. Thirdly, the stability and of the proposed algorithm

nd the convergence of position and velocity errors were guar-

nteed, and the corresponding parameter constraints were pro-

ided. In addition, it is proven that only using the velocity in-

ut of the proposed method can guarantee the position and ve-

ocity errors both converge to zeros simultaneously. Finally, from

he simulation and experimental examples, the reference trajecto-

ies were tracked accurately and fast using the proposed method.

n addition, the proposed control algorithm showed good gener-

lization ability to unseen situations. Therefore, the effectiveness

nd the generalization ability of the proposed control policy were

emonstrated. 

The decoupled multi-dimensional problem can also be consid-

red as multiple 1-dimensional control problems. Also, using the

roposed method with d = 1 can simplify the learning process

y avoiding dimension problem. Besides, as the proposed algo-

ithm focuses on the tracking error minimizing instead of achiev-

ng the specified states, the trained controller for different x -, y - or

 -axes can be inter-applied. Thus, the training process is further

implified. With the benefits of the proposed error-based learn-

ng strategy, the generalization to unseen situations is satisfactory

hich has been verified. In other words, the main contribution

f this paper is that we proposed a strategy to learn the error con-
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vergence behaviors of the desired demonstrations. This gives the

proposed method an ability of generalization to unseen situations. 

Furthermore, some other learning algorithms, e.g., multi-layer

neural networks, support vector machines, Gaussian mixture mod-

els regression and reinforce learning, can also be applied for trajec-

tory tracking with possible improvements and they are remained

as the future works. In the future, we will focus on extending the

off-line learning-based control policy to the online self-adaptive

learning algorithms. In addition, if Assumption 1 is not satisfied,

the stability analysis considering the motion constraints or the

actuator output limitations, i.e., considering the extra constraints

from S(·) , will be a new problem. 
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