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Abstract

Robotic compliant manipulation not only contains robot motion but also embodies interaction with the

environment. Frequently endowing the compliant manipulation skills to the robot by manual programming

or off-line training is complicated and time-consuming. In this paper, we propose a sequential learning

framework to take both kinematic profile and variable impedance parameter profile into consideration to

model a unified control strategy with “motion generation” and “compliant control”. In order to acquire this

unification controller efficiently, we use a sequential learning neural network to encode robot motion and a

new force-based variable impedance learning algorithm to estimate varying damping and stiffness profiles in

three directions. Furthermore, the state-independent stability constraints for variable impedance control are

presented. The effectiveness of the proposed learning framework is validated by a set of experiments using

the 4-DoF Barrett WAM.

Key words: Robot learning from demonstration (RLfD), variable impedance control, sequential learning,

physical Human-Robot interaction, stability analysis.

1. Introduction

When a robot will be used in a new task, a very time-consuming programming work by the professional

technicians is needed to endow the robot with a new skill [1]. This traditional way for preprogramming

robots is not suitable for the multi-product and small batch manufacturing lines. To endow robots with the

learning ability instead of being explicitly programmed in every possible situation is a most effective way to

reduce the threshold to start using robot technology and increase implementation efficiency. Robot learning

from demonstration (RLfD) [2] is a well-known methodology to extract the task-relevant information and

the new sensorimotor knowledge by observing the correct demonstrations. Then a learned model acquired

from the data of demonstration can be used for autonomous task execution by the robot [3].

Traditionally, RLfD is used to model the kinematic profiles of the tasks then to produce robot motion.

∗Corresponding author

Preprint submitted to Neurocomputing July 30, 2019



Figure 1: Illustration of the necessity of controlling both the robot motion and its physical interaction with the environment.

Many excellent methods have been proposed, such as the dynamic movement primitives (DMPs)[4, 5], the

stable estimator of dynamical systems (SEDS) approach [6, 7], the fast and stable modeling for dynamical

systems [8]. However, two problems have emerged in practical application: Firstly, these methods collected

and modeled the robot motion (kinematic profile) in an off-line way. These processes are time-consuming.

And even longer than the manual programming, so the advantages of the RLfD with off-line way is not

ideal in the multipurpose production line (new manipulation skills are needed frequently). Secondly, these

methods are usually used to learn the robot motion. But a stiff motion controller is not enough to implement

compliant behaviors [9]. The successful executions of compliant tasks not only require the motion generation

(the kinematic profiles of the tasks) but also need the interaction with the environment, see Fig. 1. In this

graph, the red line represents a portion of the path and the belted-ellipsoid illustrates the robot stiffness at

the contact point in Cartesian space between the end-effector and the computer screen. Motion generation

creates a path in task implementation (from starting point to reach the final state). This path is named

kinematic profile of the task in this paper. The term ”interaction with the environment” refers to regulation

of the robot’s dynamic behavior at its contact points/surfaces (for instance making the robot compliant or

stiff when necessary). Both of these skills are essential for safe and successful execution of many robotic

tasks. Cleaning the computer screen with a pure motion generation is challenging because slight uncertainty

could result in a excessive or inadequate force, and eventually lead to breakage or unresolved dirt on the

screen. Besides, the typical tasks always involve contact or require an appropriate response to unforeseen

physical perturbations. The question of how to regulate the compliance to accommodate the requirements

of the task have not been fully tackled in RLfD [10]. There are several ways to make the robots compliant:

contact detection using sensors (artificial tactile skin or force/ torque sensor) [11, 12], passively compliant by

design (reducing the weight and hardness of the robot structure or implementing elastic elements) [13, 14]

and active torque control strategies [15, 16, 17]. The last way is seen as the good alternative to the formers,

because of its initiative and precision [18]. Therefore, we apply the suitable impedance strategies to active

control the torque of the robot in this paper. Impedance control can regulate the dynamic responses of

the robot to interaction forces by establishing an appropriate virtual mass-spring-damper system on the
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end-effector [15]. Similar to the human limb impedance adjusting, parameters of the impedance control

model are regulated over time through learning based on certain criterias [19]. This learning policy has been

explored in many previous studies [20, 21, 22, 23].

In [24, 25], learning variable impedance control strategy was formulated as an optimal control problem.

In these works, the optimal control formulations were proposed to compute both the variable stiffness pro-

files and motion reference adaptation. However, in these studies, the impedance profile was tailored to each

specific robotic platform, which lost the generality.

Reinforcement learning (RL) has also been applied for learning variable impedance policies [21, 26, 27],

which is closely related to the optimal control, and successfully applied in via-point trajectory following

and pancakes flipping. Even though RL can be applied to compute the impedance of the robot to improve

the task performance, it usually needs a large number of iterations to find an optimal policy, which is not

preferred in the multi-product and small batch manufacturing lines.

In recent years, the research about seeking suitable impedance control policies for compliant behaviors

is going toward learning and imitation of impedance strategies of humans [9, 28, 10]. The learning of the

teacher’s arm impedance is not easy. Depending on the differences of task and the teaching interface, the

corresponding learning methods are also different.

In [29], the concept of teleimpedance was proposed to make the human impedance regulation skills ap-

plied for robot interacting with uncertain environments. In this case, a suitable human-machine interface

was used to provide the trajectory and stiffness references. Stiffness reference was computed using the elec-

tromyogram signals (EMG) recorded from the arm of the operator. However, as it is a real-time teleoperate

robot by a user, it did not learn the task for autonomous execution. Recently, [30, 31] not only used the sur-

face EMG to estimate demonstrator limb stiffness but also used the DMP method to encode both movement

trajectories and 1-DoFs stiffness profile (estimated from EMG) to achieve variable impedance skill transfer

and generalization.

Calinon et al. [28] derived variable stiffness for an active compliant controller from the demonstrations

of the kinematic profiles. The stiffness profile was shaped inversely proportional to the variance along the

trajectory [9]. This approach depends upon the assumption that a large position variety in demonstration

will not have a negative impact on the task execution which may not always be reasonable [10], especially in

the narrow task space (such as Minimally Invasive Surgery). In [32], the trajectory of the task was taught

using kinesthetic teaching firstly. When the kinesthetic profile of the task was learned, the teacher demon-

strated the forces using a haptic device while the robot was executing the learned motion. Then, the model

describing the desired contact forces was built, and used by the robot to determine the desired force during

the task execution. The teaching process was divided into two successive steps (kinesthetic teaching first

and then haptic teaching), and also used the off-line learning method to encode position and force profiles.

In addition, none of these works addressed the issue of execution stability of the learned variable

impedance model [33]. For the variable impedance control, stability must be guaranteed for all the pos-
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sible range of variation of the impedance parameters. This issue has been recently addressed in [34], wherein

a variable impedance control policy was proposed, by designing a tank-based admittance control strategy

and the impedance parameters all can be passively changed. The main idea of this method is to evaluate

the power balance of the robot and it ensures that the amount of energy pumped into the system is always

less than the dissipated energy, and thus the system remains passive. This approach analyzed the stability

for the cases that the reference trajectory is fixed throughout the motion [35].

According to the current research progress and present problems, the main contents in this paper are as

follows:

1) Firstly, we emphasize that the kinematic profile (the trajectory of task) is very important for complet-

ing tasks in some applications. Especially teaching large position deviation [9, 10] in a narrow task space

is not feasible, such as Minimally Invasive Surgery. Therefore, we propose a learning framework based on a

simple teaching interface, so as the stiffness and damping profile can be learned from demonstrations without

destroying the desired kinematic profiles (It is unnecessary to intentionally make a deviation from the teach-

ing trajectory). That also means there is no need to provide kinematic and compliant teaching separately,

the kinematic and 3-DoFs impedance profiles can be learned simultaneously from demonstrations.

2) Owing to an increasing number of robots are working on multiproduct and small-batch production

lines or providing a wide range of services to meet people’s daily needs, robots need to master new skills

frequently and rapidly, the learning speed of algorithms is an important evaluation metric for learning skills

from demonstrations. Therefore an effective sequential learning method is developed in this work, which

sequentially exploits the new input data of kinematic profiles and interactive forces to learn the control

model in demonstration phase. Then the learned controller is used to reproducing the robotic compliant

manipulation. After the demonstration phase (learning phase), the learned controller is fixed until the next

demonstration start. The proposed learning method does not require the time-consuming off-line training

process, and thus the robot learning system becomes high efficiency and easy using. In addition, the learning

process does not need a large number of samples, a control policy can be learned from one or more demon-

strations.

3) A force-based variable impedance learning process along the x, y and z axes is developed. More specif-

ically, the compliances along the three directions change independently which makes robot more flexible than

the previous works using uniform compliance changing in three directions.

4) Furthermore, the stability analysis and the corresponding constraints for the learned impedance pa-

rameters are presented. Therefore, the global asymptotic stability of variable impedance control can be

guaranteed through the stability considerations in the learning process, which allows the robot to safely

operate in the environments where human beings and robot share the workspace.

To validate the proposed learning framework, we test in three different experiments. The first experiment

illustrates the capability of the sequential learning algorithm in modeling kinematic profiles while the learned

model being able to generalize to unseen initial points and reach the desired position precisely. The second
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experiment shows the proposed method can learn variable impedance parameters (stiffness and damping

value) in selective directions based on the teaching forces. Meanwhile, the stability constraints of variable

impedance control are confirmed by the test. The third experiment shows how a unification controller can

be learned in a realistic task teaching.

The rest of the paper is organized as follows. Section 2 presents the control framework of this work. The

proposed interface for demonstrations and the learning framework of the compliance behaviors are described

in Section 3. In Section 4, we develop the global asymptotic stability conditions of the proposed methods.

Section 5 presents the experimental evaluations. Finally, the conclusion and future work are presented in

Section 6.

2. Controller and Problem Formulation

Impedance control is a very effective way of implementing the robotic compliant behavior, which makes

a manipulator equivalent to a multidimensional mass-spring-damper system with the desired impedance

parameters (inertia, stiffness and damping matrix). The goal of impedance control in the task space is to

maintain the relationship between the position error x̃ = xd − x and the exerted force Fe, the controller is

given by:

M ¨̃x = Fe −Bq ˙̃x−Kqx̃. (1)

where x and xd ∈ R3 represent the current and desired position of the robot end-effector, M , Bq, Kq ∈ R3×3

denote the desired inertia matrix, time varying damping matrix and time varying stiffness matrix respectively

[36]. M , Bq and Kq are symmetric and positive definite. In this work we assign a diagonal structure to the

stiffness matrix Kq = diag([kxq, k
y
q, k

z
q]
T ) by decoupling it. This is under an assumption that the positional

errors only result in force variations and won’t influence the orientation of the robot [10]. Fe ∈ R3 is called

external fore, disturbing force or teaching force, which is obtained by a six-axis force/torque sensor on the

robot end-effector in the teaching phase. But in the reproduction stage, the force Fe is real-time calculated

through formula (1) according to the learned impedance parameters, desired position and the current state.

Robot motion generation can be modeled by dynamic system (DS) technology [8] as

ẋ = f(x) (2)

where x and ẋ are recorded in every sample interval ∆t, f(.) is a nonlinearly differentiable function and is

estimated from neural network modeling in motion learning stage (Section 3.2). The input to the learning

process is a datasetD = {xn, ẋn} , n ∈ [1, N ], where xn and ẋn indicate the nth collected position and velocity

data. Then adopting algorithm to the DS is to learn the mapping f(·) : x → ẋ. Accordingly, the equation

(2) can be rewrited to discrete representation as ẋn−1=xn−xn−1

∆t = f(xn−1) or xn = f(xn−1).∆t+xn−1. Also

the desired points can be calculated by xnd = f(xn−1
d ).∆t + xn−1

d in the reproduction stage, where x0
d = x0

is the initial position of the robot end-effector. And the nth position/velocity/acceleration errors between
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desired point and current position are computed as follows




x̃n = xnd − xn = G(xn−1
d )− xn ← Set : G(xn−1

d ) = f(xn−1
d ) ·∆t+ xn−1

d

˙̃xn = ẋnd − ẋn = f(xnd )− ẋn = f [G(xn−1
d )]− ẋn

¨̃xn = ẍnd − ẍn = ḟ [G(xn−1
d )]− ẍn.

(3)

Substituting the equation (3) into (1), we can obtained a unified control strategy which is combines

kinematic (xd) stiffness and damping profile as

Fne =M [ḟ [G(xn−1
d )]− ẍn] +Bn.∆t[f [G(xn−1

d )]− ẋn]

+Kn.∆t[G(xn−1
d )− xn]

(4)

where M is known in this paper, f(.), Bn.∆t and Kn.∆t are unknown and needed to be estimated in the

learning phase. And the nth robot end-effector position xn is acquired by the joint angles and the forward

kinematics. xnd can be calculated by the learned f(.) and the previous n − 1th position xn−1
d . The serial

desired positions {xnd , n ∈ [1, N ]} of the robot end-effector determine the robot motion. The impedance

parameters Bn.∆t and Kn.∆t determine the compliant behaviors of the robot when subjected to external

disturbance. In this paper, we formulate the problem to learning stability unification controller with ”motion

generation f(.) (produce kinematic profiles xnd )” and ”variable impedance skills (Bn.∆t and Kn.∆t)” from

human demonstrations.

3. Learning the Unified Control Strategy from Demonstrations

We start by giving an overview of our robotic compliant manipulation learning system. As illustrated in

the schematic of Fig. 2, the system is divided into two phase (learning and reproduction). In the first phase

(learning), demonstrations of the task are online collected to sequentially learn the motor skills and impedance

parameters (variable stiffness and damping). In the reproduction phase, the learned motion generation and

compliant skills (variable impedance parameters) are used for reproducing the robotic compliant behavior.

This section shows how we address these challenging aspects by proposing a novel RLfD structure that

combines a simple demonstration interface, neural network learning, and a force-based variable impedance

learning process for reproducing compliant manipulation.

3.1. Interface for Demonstrations

In order to teach the robot with the desired kinematics and compliance, the teacher should communicate

with the robot such that the robot knows what compliant behavior should be executed. We use a simple

and low-cost interface for the demonstration collection, which only depends on the robot arm equipped

with a six-axis force and torque (F/T) sensor (Barrett Technology, Inc) at the endpoint (considered as the

wrist center), see Fig. 3. In the teaching stage, the teacher shows the desired kinematic profile with one

hand meanwhile teacher’s another hand physically demonstrates the appropriate force to the F/T sensor at

corresponding direction. Meaning that while the teaching is start, the robot is set into gravity compensation
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Figure 2: Block diagram of the proposed learning framework.

mode, and the links are manually moved (the forces are manually exerted) by demonstrator. Note that the

teacher backs up the robot arm to eliminate the spatial displacements caused by the teaching forces along the

movement. The newly received kinematic profile and force are preserved and shown to the teacher himself

on a computer screen. Both force and position measurements are acquired at a sampling frequency of 500 Hz

and force data are filtered by a 3-order low-pass Butterworth filter with cutoff frequency 10 Hz to eliminate

the noise.

Figure 3: The figure shows the equipment of the proposed interface. The forces are measured by the F/T sensor and shown on

a computer screen. The positions of robot end-effector are real-time calculated by the joint angles and Forward Kinematics.

3.2. Sequential Learning of the Kinematic Profile

Various techniques can be applied to capture the kinematics of the task, such as DMP [4], Dynamical

System (DS) [6, 7] and so on. Owing to the benefits of the DS, we model the kinematic profile of the task
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as an autonomous DS. In our previous work [8], the DS is modeled by the ELM:

ẋ = O = f(x) =
Ñ∑

i=1

βig(wi
Tx+ bi) (5)

where Ñ denotes the number of hidden nodes and b = (b1, · · · , bÑ ) expresses the hidden layer biases; in

addition, we refer to the input weights wiutput as W = (w1,w2, ...,wÑ) with dimension d× Ñ (d denotes

the number of nodes of input and output layers), and the output weights woutput as β = (β1, β2, ..., βÑ)

with the same dimension.

Eq.(5) can be written compactly as

O = HβT . (6)

In the training phase, W and b are randomly initialized and the output weights are calculated from the

following norm least-squares problem

min
β
||HβT −O|| (7)

where

H(W, b) =




g(wT
1 x1 + b1) ... g(wT

Ñ
x1 + bÑ )

... ...
...

g(wT
1 xN + b1) ... g(wT

Ñ
xN + bÑ )




is the hidden layer output matrix, and O = (o1, ..., oN )T are the target values from the demonstrations. N

is the total number of training samples. Owing to the fixed input weights and hidden layer biases, H(W, b)

is also fixed, and thus the solution of the minimum norm least-squares is β̂T = H†O, where H† is the

Moore-Penrose generalized inverse of the matrix H [38].

Through above analysis, our previous work [8] assumes that the training data collection is completed and

the data are all available for the ELM training. Actually, the training data arrives chunk-by-chunk (in some

case is one-by-one) in the teaching phase. In order to further improve the efficiency of RLfD, an effective

training algorithm should be developed. Due to the input weights and the bias of the ELM are randomly

generated, only the output weights are calculated in the training process. We take inspiration from online

sequential extreme learning machine (OS-ELM) [39], and further investigate the online updating of output

weights based on the sequentially arriving data in the DS.

By the definition of the ELM, the output weight matrix β̂T = H†O is a least-squares solution of (6).

Under the condition rank(H) = Ñ , where Ñ is the number of hidden nodes, H† (the Moore-Penrose

generalized inverse of the matrix H) is given by

H† = (HTH)−1HT . (8)

Substituting (8) into β̂T = H†O, β̂T becomes

β̂T = (HTH)−1HTO. (9)
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Eq.(9) is called the least-squares solution to Eq.(6).

Step 1 Initialization phase: Given an initial data set of training D0 = {x(n), ẋ(n)}N0
n=1, and N0 ≥ Ñ .

(a) Calculate hidden layer output matrix

H0(W, b) =




g(wT
1 x1 + b1) ... g(wT

Ñ
x1 + bÑ )

... ...
...

g(wT
1 xN0 + b1) ... g(wT

Ñ
xN0 + bÑ )




and O0 = (o1, ..., oN0)T = (ẋ1, ..., ẋN0)T .

(b) Calculate initial output weight matrix β̂T0 = φ−1
0 HT

0 O0 where φ0 = HT
0 H0.

(c) Set q = 0.

Step 2 Sequence learning phase: When the (q+ 1) th chunk of data Dq+1 = {x(n), ẋ(n)}
∑q+1

j=0 Nj

n=(
∑q

j=0Nj)+1

arrives

(a) Calculate hidden layer output matrix of new added data

Hq+1 =



g(wT
1 x(

∑q
j=0 Nj)+1 + b1) · · · g(wT

Ñ
x(

∑q
j=0 Nj)+1 + bÑ )

... · · ·
...

g(wT
1 x∑q+1

j=0 Nj
+ b1) · · · g(wT

Ñ
x∑q+1

j=0 Nj
+ bÑ )



,

Oq+1 = (o(∑q
j=0 Nj)+1, ..., o∑q+1

j=0 Nj
)T . (10)

(b) Let δq+1 = φ−1
q+1.

(c) Calculate hidden layer output weight matrix of new added data

δq+1 = δq − δqHT
q+1(I +Hq+1δqH

T
q+1)−1Hq+1δq

βTq+1 = βTq + δq+1H
T
q+1(Oq+1 −Hq+1β

T
q ).

(11)

(d) Set q = q + 1, and go back to step 2.

Eq. (11) provides the recursive formulation for updating the output weight matrix, which is the sequential

calculation of the least-squares solution (9). When the data update is finished, the last output weight matrix

is obtained. Substituting the last output weight matrix into Eq.(5), and this learned dynamic system can

be applied to reproduce the kinematic profile.

3.3. Sequential Learning of the Varying Impedance Parameters

According to the proposed interface for demonstration, we can obtain varying interaction forces. In this

subsection, we will explore the variability of collected force to adjust the impedance parameters (stiffness

and damping matrix). The kernel thought of the stiffness adjustment is: the larger disturbing force the

robot can resist, the greater stiffness the robot will become. The stiffness matrix is symmetric and positive

definite, which is built around the eigenvectors of the covariance matrix of the force data. The stiffness

value along each eigenvector set to be proportional to the corresponding eigenvalue of the covariance of the

9



collected force perturbations.

We let Ξ = {Fn, qn}Nn=0 represent the set of observed teaching forces (exerting on the endpoint of the

robot) with their corresponding time stamps, where N is the number of the acquired perturbation data.

These force perturbations are counteracted by the teacher through maintaining the position on the desired

trajectory. We assumed that these teaching forces don’t cause the motion deviations. At time q, a stiffness

matrix is estimated based on the data in Ξ with the time stamps [q− (w− 1), q]. Thus, the stiffness value is

acquired based on a sliding temporal window-view of the length w over the observed interaction force data.

Let Uq and Lq indicate the upper and lower bounds for the indices of data points inside the sliding window

[q − (w − 1), q] which has the





Lq = max{n ∈ [1, 2, ..., N ] : qn ≤ q − (w − 1)}
Uq = min{n ∈ [1, 2, ..., N ] : q ≤ qn}.

(12)

Let Wq = Uq − Lq + 1 denote the number of data points in the temporal window at time q. The

corresponding covariance matrix of the force data in the window is represented by Σq that:

Σq = E2
q − E1

q (E1
q )T (13)

where

E1
q = 1

Wq

Uq∑
n=Lq

Fn

E2
q = 1

Wq

Uq∑
n=Lq

FnF
T
n .

(14)

At time q, Σq determines the stiffness matrix and this desired stiffness will be sent to the robot. Due to

the covariance matrix Σq is symmetric and positive definite, it can be decomposed as the following form

Σq = PΛP−1 where Λ is a diagonal matrix consisting of the eigenvalues λjq > 0, j = 1, 2, 3. The columns

of the matrix P are the orthonormal eigenvectors. We constructed a stiffness matrix Kq using the same

eigenvectors as Σq:

Kq = P




g(λ1
q) 0 0

0 g(λ2
q) 0

0 0 g(λ3
q)


P

−1 (15)

where the eigenvalues λjq are proportional to the corresponding eigenvalue of the covariance matrix Σq:

g(λjq) =





kjmax,

(kjmax − kjmin)
λj
q−λj

min

λj
max−λj

min

+ kjmin,

kjmin,

λjmax < λjq

λjmin < λjq < λjmax

λjq < λjmin

(16)

where the allowable values of the stiffness are bounded by Kmax = diag([k1
max, k

2
max, k

3
max]T ) and Kmin =

diag([k1
min, k

2
min, k

3
min]T ). Besides,

λmax = diag([λ1
max, λ

2
max, λ

3
max]T ) and λmin = diag([λ1

min, λ
2
min, λ

3
min]T ) are tunable parameters of the

system.
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Figure 4: The figure shows the sliding windows from time q to (q + 1).

As the force teaching continues, the (q + 1) th chunk of force data at time (q + 1) is added to Ξ. Let

Uq+1 and Lq+1 indicate the upper and lower bounds for the indices of data points inside the sliding window

[q−w, q+ 1]. The number of data points in the temporal window at time (q+ 1) is Wq+1 = Uq+1−Lq+1 + 1.

The new data set is sorted in chronological order, and the newly arrived perturbation data is simply tucked

in the correct place according to the time stamp. The sliding windows from time q to (q + 1) are shown in

Fig. 4. According to the Eq. (14), the E1
q+1 and E2

q+1 can be calculated as:

E1
q+1 =

1

Wq+1

Uq+1∑

i=Lq+1

Fi =
1

Wq+1




Uq∑

i=Lq+1

Fi +

Uq+1∑

i=Uq+1

Fi




=
1

Wq+1






Uq∑

i=Lq

Fi −
Lq+1−1∑

i=Lq

Fi


 +

Uq+1∑

i=Uq+1

Fi




=
1

Wq+1




WqE

1
q −

Lq+1−1∑

i=Lq

Fi


 +

Uq+1∑

i=Uq+1

Fi




=
Wq

Wq+1
E1
q +

1

Wq+1




Uq+1∑

i=Uq+1

Fi −
Lq+1−1∑

i=Lq

Fi




(17)

E2
q+1 =

1

Wq+1

Uq+1∑

i=Lq+1

FiFi
T =

1

Wq+1




Uq∑

i=Lq+1

FiFi
T +

Uq+1∑

i=Uq+1

FiFi
T




=
1

Wq+1






Uq∑

i=Lq

FiFi
T −

Lq+1−1∑

i=Lq

FiFi
T


 +

Uq+1∑

i=Uq+1

FiFi
T




=
1

Wq+1




WqE

2
q −

Lq+1−1∑

i=Lq

FiFi
T


 +

Uq+1∑

i=Uq+1

Fi




=
Wq

Wq+1
E2
q +

1

Wq+1




Uq+1∑

i=Uq+1

FiFi
T −

Lq+1−1∑

i=Lq

FiFi
T


 .

(18)

The empirical covariance of a new data set is recalculated by this algorithm. The sequential calculation

of the covariance matrix from time q to q + 1 is shown below:

Σq+1 = E2
q+1 − E1

q+1(E1
q+1)T (19)

where E1
q+1 and E2

q+1 are calculated from Eq. (17), (18) based on the previous E1
q , E2

q and newly arrived
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data.

According to Eq. (15) and (16), we can calculate the new stiffness values Kq+1 based on the empirical

covariance of the new data set Σq+1.

Some researchers investigated the relationship between the stiffness matrix K and the damping matrix

B [41, 42, 37]. Studies have shown that the damping ratio is a constant, which indicates a linear relationship

between square root stiffness and the damping matrix. Accordingly, the damping matrix B of the control

system can be presented as:

B = γ
√
K (20)

where the constant γ > 0 can be tuned to adjust different tasks.

4. Stability Analysis

Section 3 proposed the sequential learning method to acquire the robot motion dynamic system ẋ = f(x)

and variable impedance parameters from demonstrations. Some researchers found that the variability of the

impedance parameters produce the potential energy [34]. The potential energy is injected into the system,

and it may destroy the passivity of the system. The loss of passivity severely affects the impedance control:

the stable interaction is no more guaranteed, the tracking error x̃ can hardly converge to zero. It is crucial to

guarantee the stability of the variable impedance controller. This is especially important in the applications

that the robots work close to humans [33].

In the adaptive control, it is common to construct the energy functions based on the weighted sums of the

velocity and position errors. The same approach can be used for the varying impedance control to establish

state-independent stability conditions relating to the stiffness and damping profiles. Consider the following

Lyapunov candidate function:

V =
1

2
QTMQ+

1

2
x̃TAqx̃ (21)

where 



Q = ˙̃x+ αx̃

Aq = −α2M + αBq +Kq.
(22)

We can guarantee that Aq is positive semidefinite through selecting an appropriate positive α. This candidate

function is a generalized version of a Lyapunov function which is used for the analysis of time-varying scalar

systems in [43, 44].

Stability conditions: Let M be a constant, symmetric and positive definite matrix. Let Kq and Bq

be symmetric, positive definite and continuously differentiable varying stiffness and damping profiles. The

equilibrium point of the system (Eq. (1)) is {x̃ = 0, ˙̃x = 0} ({x = xd, ẋ = ẋd} and F = 0), that is stable if

there exists an α > 0 such that ∀q > 0:

1)− α2M + αBq +Kq � 0 (23a)

2)αM −Bq � 0 (23b)

12



3)K̇q − 2αKq + αḂq � 0. (23c)

If the semi-definiteness in condition 3) is replaced with definiteness, the system becomes asymptotic stability.

Proof. Please see Appendix A.

Inspection of the condition 2) in Eq.(23), we can use the least conservative constrain to chose α. Due to

M and B are symmetric, the condition 2) can be rewritten as:

sup
‖v‖=1

vT (αM)v − inf
‖v‖=1

vTBqv ≤ 0. (24)

Because α > 0, M and B are positive, the condition 2) can be rewritten as:

0 < α ≤ min
q

inf
‖v‖=1

vTBqv

sup
‖v‖=1

vTMv
. (25)

If condition 2) is satisfied, condition 2) can be rewritten as −(α)(αM −Bq) � 0. And we can learn that the

condition 1) is fulfilled as well by substituting the rewritten condition 2) (−α2M + αBq � 0) into condition

1). Therefore, with the choice of Eq. (25), condition 1) and 2) in Eq.(23) are satisfied for all q.

Substituting Eq. (20) into Eq. (1), a scalar system is given by m¨̃x+ b(q) ˙̃x+ k(q)x̃ = 0 with the constant

damping ratio b(q) = γ
√
k(q). Now consider condition 3) in Eq.(23). The damping ratio is constant and

γ > 0. We can further obtain the formula ḃ(q) = γk̇(q)

2
√
k(q)

. Substituting ḃ(q) = γk̇(q)

2
√
k(q)

into the condition 3)

of Eq.(23), we have:

k̇(q)− 2αk(q) + α
γk̇(q)

2
√
k(q)

≤ 0. (26)

Further more, the upper bound of the stiffness time-derivative in Eq.(23) is given by:

k̇(q) ≤ 4αk
3
2 (q)

2
√
k(q) + αγ

(27)

5. Experimental Evaluations

We evaluate the performance of the proposed learning framework via three experiments. The first exper-

iment is performed the kinematic profile of the task on the 4-DoF Baxter WAM. From this experiment, we

illustrate the capability of the sequential learning algorithm in modeling kinematic profiles. Furthermore,

this experiment also shows that the learned model is able to generalize to unseen initial points and reach

the desired position precisely. In the second experiment, we show that the proposed method can learn vari-

able impedance parameters (stiffness and damping value) in three directions based on the teaching forces.

Meanwhile, the stability analysis of variable impedance control is confirmed by the test. The third experi-

ment reports on the performance quantification of the sequential learning unification controller in encoding

kinematic profiles and the impedance profiles of the task.

During these experiments, the motions and interaction forces are measurement through the teaching

13



interface presented in Section 3.1. In the teaching phase of the second and third experiments, the teacher’s

one hand demonstrates the interaction force and another hand backs up the robot arm to counteract the

disturbances and strictly guarantees the smooth accomplishment of the demonstration task. The kinematic

profiles of the task and the forces applied for demonstrations are acquired at 500 Hz. In the first experiment,

we only use the kinematic profile (trajectory) data to evaluate the generalization of the learned motion

generator. The second experiment only uses the force data to verify the availability of the 3-DoF stiffness

and damping learning and the stability of the leaned variable compliant controller. In the third experiment,

we use both the kinematic profile and force data to show the feasibility of the learned unification controller.

Therefore, the purpose of three experiments is to detailed evaluate the generalization of the learned motion

generator, stability of the leaned variable compliant controller and the feasibility of the learned unification

controller.

5.1. Evaluation of Kinematic Profile Learning in the Operational Space

To evaluate the capability of our approach in modeling motions, we teach a 4-DoF Barrett WAM how to

place a tennis ball to the desired location in front of it. We use the Cartesian coordinate system to represent

the robot motions and consider the positions of the end-effector as state variables. This task is demonstrated

by a human teacher four times (four start positions are different, target positions are the same), see Fig.

5. Meanwhile, the learning method as described in section 3.2 keeps receiving new data and updating the

parameter β of the model until the demonstration ends. We set the number of hidden layer neurons as 150,

and use the sigmoid activation function in the kinematic profile learning model. When the demonstrations

ended, a robot motion generator (Eq.(2)) is acquired immediately based on the last updated parameters.

In the reproduction phase, the initial input is the current robot end-effector position (initial point). The

subsequent inputs are the previous calculated desired points. To better illustrate the extensiveness feature

of the learned robot motion generator, we let the robot start from unseen locations (initial points different

from demonstrations) in the operational space to reproduce the learned motion (place a tennis ball to the

desired location). 12 trajectories generated by learned robot motion generator are displayed in Fig. 6.

Figure 6 shows the executions of the task from 12 different initial points. We can see that the reproductions

have the similar shapes with demonstrations and the robot can reach the target location in all the cases

precisely. The mean distance between the 12 final points (generated by the learned robot motion generator)

and the desired point (average points of four demonstrated target) is only 1.8565mm. This precision is more

than the requirement for the accurate execution of the task.

5.2. Stability Evaluation of Variable Impedance Learning

The goal of this experiment is to verify the idea that the force-based method can learn the stiffness and

damping variations in three directions independently. Besides, the stability conditions are validated in this

experiment. According to Eq.(23) and Eq. (25), the conditions 1) and 2) can be guaranteed by selecting an
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Figure 5: Collection of four demonstrations through kinesthetic teaching. A teacher demonstrates the robot how to places a

ball in the desired position from four different starting points.
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Figure 7: Collection of interaction forces through physical teaching. The teacher applies forces in x, y, z directions respectively.

appropriate α, the stability of the varying impedance control is confirmed if all eigenvalues of Eq. (28) are

negative

Γ = K̇q − 2αKq + αβ̇q. (28)

In the teaching phase, the teacher applies force in the z, y, x directions at 7.5s 18s, 20.5s 30s, 31s 43.5s

respectively. Fig. 7 shows the recorded interaction forces through the teaching interface. In the learning

process, the width of the sliding window w is set to 1 second. γ is manually set as 2. α is chosen as Eq.

(25). The minimum and maximum values for the stiffness are set to Kmin = 150N/m,Kmax = 800N/m.

The parameters λmin and λmax are set to 0.05 and 3, respectively.

These collected forces are shown in Fig. 7. Fig. 8 shows the resulting variable stiffness in x, y and z

directions. The varying damping profiles are shown in Fig. 9, which are similar to the stiffness profiles.

This is because that the relationship between the root square stiffness and the damping matrix is linear,

see Eq.(20). From Fig. 8 and Fig. 9, the robot can learn the 3-DoF stiffness and damping profiles based

on the proposed method. So that the robot can execute more dexterous tasks than 1-DoF stiffness and

damping profiles. The force-based 3D variable impedance learning method is one of our improvement than

the previous 1D variable impedance learning method [10, 30]. Fig.10 shows the evolution of the eigenvalues

in Eq. (28) for the variable stiffness and damping profiles. The eigenvalues remain negative definite over the

time, and thus the impedance profile is validated to yield stable control. The stability of variable impedance

control can be guaranteed through the stability considerations, which provides a theoretical guarantee for

the stability and security of the learned controller.

5.3. Learning Compliant Task —Putting a Doll into a Box

In this section, we show that the learning framework can learn a unified control strategy as instructed

by the teacher, and the controller is capable of adjusting both the robot motion and its physical interaction

with the environment. The interface for compliant behavior learning has described in section 3.1. In order
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Figure 8: Varying stiffness profiles resulting from the interaction forces showed in Fig. 7
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Figure 9: Varying damping profiles resulting from the interaction forces showed in Fig. 7.
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Figure 10: The evolution of the eigenvalues in Eq.(28) for the variable stiffness and damping profiles.
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to implement the control strategy in Eq.(4), the control law for the actuator torques τc takes the form below:

τc = τi(ϑ) + J(ϑ)TF (29)

where τi(ϑ) is a term of the feedforward gravity compensation, ϑ indicates the joint angles and J(ϑ) is the

Jacobian matrix of the manipulator. F is calculated by Eq. (4) in the reproduction phase. The minimum

and maximum values for stiffness are set to Kmin = 150N/m,Kmax = 800N/m. Empirically, the minimum

stiffness is used to overcome static friction and the gravity of a handheld object. The maximum value of the

stiffness is set based on the safety grounds. The parameters λmax and λmin are set to 3 and 0.05.

5.3.1. Description

We chose a realistic task which gets the benefits from a varying impedance profiles. The task consists of

transporting a doll over an obstacle (the blue case) and reaching the target point upon a purple box, then

the robot drops the doll into it (the purple box). The snapshot of the task execution is shown in the Fig.

11. The desired qualitative characteristics for this task are depicted as follows:

a). From the starting point to the right top side of the obstacle, the robot should be compliant in all

directions. Because the position errors are not crucial to the completion of the task at this stage. If the

robot corrects the position errors with high stiffness, the end-effector will have high accelerations which are

dangerous to the nearby workers.

b). Overflying obstacle (from the right top of the obstacle to the left top of the obstacle). Once the robot

reaches the right top of the obstacle, the robot should stiffen up in the z-direction until arriving at the left

top of the obstacle. The goal is to avoid the robot hit the lower obstacle (the blue case) in the z-direction

when a disturbance of the z-direction occurs.

c), d). Upon the purple box and put the doll in. The robot should stiffen up in the x-y directions to hold

its x-y positions so that the robot can drop the doll into the purple box accurately. The reasonable position

changes in z-direction do not prevent the doll falling into the purple box.

(a) (b) (c) (d)

Figure 11: (a): From the starting point to the right top side of the obstacle. (b): Overflying obstacle (from the right top of the

obstacle to the left top of the obstacle). (c, d): Upon the purple box and put the doll in.
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5.3.2. Teaching

According to the description above, the robot complies in all directions from the starting point to the

right top side of the obstacle. Then, the robot stiffens up in the z-direction upon the obstacle and move

over it. Finally, the robot stiffens up in x-y directions when it reaches the target point upon the purple box.

These three steps guarantee the successful completion of the task.

In the teaching process, the teacher moves the robot to perform the desired kinematic profile with one

hand meanwhile teacher’s another hand exerts different disturbing forces on the end-effector according to the

needs of the task at different stages. Teacher backs up the robot arm to eliminate the spatial displacements

caused by the teaching forces along the movement. The robot motion and force data are acquired with 500

Hz measurement frequency. The x,y,z components of the collected force information are shown in Fig. (12).

From the starting point to the right top side of the obstacle (0− 4.1s), the teacher doesn’t exert any force.

At 4.1− 9.1s, the robot is moving over the obstacle while the teacher imposes force perturbations along the

z-direction. Between 17.1s and 27.2s, the robot reaches the target point over the purple box and drops the

doll in. The teacher applies force in the x, y directions mainly. Note that the force applied in one direction

also causes slight changes in other directions. This slight changes are inevitable and the effects on task

performance can be ignored.

5.3.3. Results

The stiffness profiles have acquired from the teaching round are shown in Fig.??. Note that the stiffness

in the z-direction reaches the maximum during the robot moving over the obstacle, the stiffness in x, y

directions reach their maximum during the robot reaching the target and putting the doll in. We attribute

this to the fact that, the obstacle (blue case) and the box (purple box) are placed parallel to the x-y plane.

And when the robot moving over the obstacle, position deviation in the z-direction would result in false

collisions. When the robot reaches the target point upon the purple box, the robot would fail to drop the
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Figure 12: Figures show the force changes in the x, y and z directions during teaching.

Figure 14: Results of producing compliant manipulation with the learned unification controller.

doll into the purple box because of the position deviations along the x and y-directions.

In the reproduction phase, we adopt a torque control model and set the calculated desired position as

the input of the neural network. Illustration of reproducing demonstration task with the learned unification

controller is shown in Fig. 14. The red solid line indicates the reproduction trajectory of the task. The

stiffness matrices are plotted as the ellipsoids at a sequence of points along the trajectory of the task.

The ellipsoids are plot with semi-axis, the lengths of semi-axis (xr, yr, zr) are inversely proportional to the

corresponding stiffness values. For example, a low stiffness along x-direction is depicted by an ellipsoid with

a long semi-axis in the x-direction. The ellipsoid semi-axes in three directions from the initial point to the

first blue dotted line and from the second blue dotted line to the target point are longer than the ellipsoid

semi-axis between the two blue dashed lines. Longer semi-axis corresponding to the lower stiffness at those

points. Between the two blue dashed lines (crossing obstacle phase), we can see that the semi-axis lengths

of the ellipses in the z-direction are very small, and it shows that the stiffness of the z-direction is large (to

prevent robot collides obstacle below when disturbance arise). At the target point, the semi-axis lengths of

the ellipse in the x, y directions are small which denotes the stiffness in the x, y directions are large. It is

determined by the requirements of the successful completion of the task.
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The kinematic, stiffness and damping profiles are modeled simultaneously without teaching kinematic

profile and force separately in this experiment, which is a very natural way. Our learning framework exploits

the data of kinematic profiles and teaching forces to sequentially learn compliant manipulation, which is a

more efficient way than the training after data collection completed [8, 35] and manual programming.

6. Conclusion and future work

In this paper, we presented a learning framework to model a unification controller for robotic compliant

manipulation. This framework employs a sequential learning neural network to encode robot motion, and

uses a new force-based variable impedance learning method to estimate varying damping and stiffness matrix

in three directions. When the demonstration is over, a unified control strategy has automatically acquired

without hand-coding. Furthermore, we derived the stability constraints of the variable impedance control

to guarantee the safety of the learned unification controller when it interacts with environments. Three

experiments have been carried out to verify the performance of the proposed method.

In this work, we assumed that the locations of the obstacle and target point are known exactly. In

the further studies, we would like to take the visual information into the learning framework such that it

can timely regulate control policy once the environment (the target point and obstacle positions) changes.

Additionally, we will investigate the automatic detection of failed controller. When the learned controller

is no longer adaptive to the new changing environment (detected through a visual system), the system can

automatically alert the users to supply new demonstrations. This will not only keep the safety but also

provide a better interaction between the robot and human.

APPENDIX A PROOF OF STABILITY CONDITIONS

Proof. We used Eq. (21) as a Lyapunov function candidate for the system (1). Condition 1) is intended

to ensure the positive definite of the Lyapunov candidate function V . Substituting Eq. (22) into Eq. (21),

yields the Lyapunov function candidate as shown below:

V =
1

2
( ˙̃x+ αx̃)TM( ˙̃x+ αx̃)

+
1

2
x̃T [−α2M + αBq +Kq]x̃.

(30)

The derivative of V is given by

V̇ =( ˙̃x+ αx̃)TM(¨̃x+ α ˙̃x) +
1

2
x̃T (αḂq + K̇q)x̃

+ x̃T (−α2M + αBq +Kq) ˙̃x

= ˙̃x
T
M ¨̃x+ αx̃TM ¨̃x+ ˙̃x

T
αM ˙̃x+ x̃Tα2M ˙̃x

+ x̃T [−α2M + αBq +Kq] ˙̃x+
1

2
x̃T [αḂq + K̇q]x̃.

(31)
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Substituting F = 0 into Eq. (1) yields M ¨̃x = −Bq ˙̃x−Kqx̃ and with some rearrangement we obtain:

V̇ = ˙̃x
T

[−Bq ˙̃x−Kqx̃] + αx̃T [−Bq ˙̃x−Kqx̃] + ˙̃x
T
αM ˙̃x

+ x̃Tα2M ˙̃x+ x̃T [−α2M + αBq +Kq] ˙̃x

+
1

2
x̃T [αḂq + K̇q]x̃

= ˙̃x
T

[αM −Bq] ˙̃x

+ ˙̃x
T

[−Kq − αBq + α2M − α2M + αBq +Kq]x̃

+ x̃T [−αKq +
1

2
αḂq +

1

2
K̇q]x̃

= ˙̃x
T

[αM −Bq]︸ ︷︷ ︸
≤0(see Theorem 1)

˙̃x

+ x̃T [−αKq +
1

2
αḂq +

1

2
K̇q]

︸ ︷︷ ︸
≤0(see Theorem 1)

x̃T

≤0.

(32)

Note that V is positive definite, decrescent and radially unbounded. We can also substitute the conditions

from Theorem 1 in to Eq. (32) to confirm V̇ ≤ 0 for all x̃, ˙̃x 6= 0, which concludes the proof. Replacing

semi-definiteness in condition 2) or 3) of Theorem 1 with negative definiteness analogously yields a V < 0

for all x̃, ˙̃x 6= 0. Therefore, the asymptotic stability is proven.
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