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Abstract

Robotic compliant manipulation not only contains robot motion but also embodies interaction with the

environment. Frequently endowing the compliant manipulation skills to the robot by manual programming

or off-line training is complicated and time-consuming. In this paper, we propose a sequential learning

framework to take both kinematic profile and variable impedance parameter profile into consideration to

model a unified control strategy with “motion generation” and “compliant control”. In order to acquire this

unification controller efficiently, we use a sequential learning neural network to encode robot motion and a

new force-based variable impedance learning algorithm to estimate varying damping and stiffness profiles in

three directions. Furthermore, the state-independent stability constraints for variable impedance control are

presented. The effectiveness of the proposed learning framework is validated by a set of experiments using

the 4-DoF Barrett WAM.

Key words: Robot learning from demonstration (RLfD), variable impedance control, sequential learning,

physical Human-Robot interaction, stability analysis.

1. Introduction

When a robot will be used in a new task, a very time-consuming programming work by the professional

technicians is needed to endow the robot with a new skill [1]. This traditional way for preprogramming

robots is not suitable for the multi-product and small batch manufacturing lines. To endow robots with the

learning ability instead of being explicitly programmed in every possible situation is a most effective way to

reduce the threshold to start using robot technology and increase implementation efficiency. Robot learning

from demonstration (RLfD) [2] is a well-known methodology to extract the task-relevant information and

the new sensorimotor knowledge by observing the correct demonstrations. Then a learned model acquired

from the data of demonstration can be used for autonomous task execution by the robot [3].

Traditionally, RLfD is used to model the kinematic profiles of the tasks then to produce robot motion.
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Figure 1: Illustration of the necessity of controlling both the robot motion and its physical interaction with the environment.

Many excellent methods have been proposed, such as the dynamic movement primitives (DMPs)[4, 5], the

stable estimator of dynamical systems (SEDS) approach [6, 7], the fast and stable modeling for dynamical

systems [8]. However, two problems have emerged in practical application: Firstly, these methods collected

and modeled the robot motion (kinematic profile) in an off-line way. These processes are time-consuming.

And even longer than the manual programming, so the advantages of the RLfD with off-line way is not

ideal in the multipurpose production line (new manipulation skills are needed frequently). Secondly, these

methods are usually used to learn the robot motion. But a stiff motion controller is not enough to implement

compliant behaviors [9]. The successful executions of compliant tasks not only require the motion generation

(the kinematic profiles of the tasks) but also need the interaction with the environment, see Fig. 1. In this

graph, the red line represents a portion of the path and the belted-ellipsoid illustrates the robot stiffness at

the contact point in Cartesian space between the end-effector and the computer screen. Motion generation

creates a path in task implementation (from starting point to reach the final state). This path is named

kinematic profile of the task in this paper. The term ”interaction with the environment” refers to regulation

of the robot’s dynamic behavior at its contact points/surfaces (for instance making the robot compliant or

stiff when necessary). Both of these skills are essential for safe and successful execution of many robotic

tasks. Cleaning the computer screen with a pure motion generation is challenging because slight uncertainty

could result in a excessive or inadequate force, and eventually lead to breakage or unresolved dirt on the

screen. Besides, the typical tasks always involve contact or require an appropriate response to unforeseen

physical perturbations. The question of how to regulate the compliance to accommodate the requirements

of the task have not been fully tackled in RLfD [10]. There are several ways to make the robots compliant:

contact detection using sensors (artificial tactile skin or force/ torque sensor) [11, 12], passively compliant by

design (reducing the weight and hardness of the robot structure or implementing elastic elements) [13, 14]

and active torque control strategies [15, 16, 17]. The last way is seen as the good alternative to the formers,

because of its initiative and precision [18]. Therefore, we apply the suitable impedance strategies to active

control the torque of the robot in this paper. Impedance control can regulate the dynamic responses of

the robot to interaction forces by establishing an appropriate virtual mass-spring-damper system on the
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end-effector [15]. Similar to the human limb impedance adjusting, parameters of the impedance control

model are regulated over time through learning based on certain criterias [19]. This learning policy has been

explored in many previous studies [20, 21, 22, 23].

In [24, 25], learning variable impedance control strategy was formulated as an optimal control problem.

In these works, the optimal control formulations were proposed to compute both the variable stiffness pro-

files and motion reference adaptation. However, in these studies, the impedance profile was tailored to each

specific robotic platform, which lost the generality.

Reinforcement learning (RL) has also been applied for learning variable impedance policies [21, 26, 27],

which is closely related to the optimal control, and successfully applied in via-point trajectory following

and pancakes flipping. Even though RL can be applied to compute the impedance of the robot to improve

the task performance, it usually needs a large number of iterations to find an optimal policy, which is not

preferred in the multi-product and small batch manufacturing lines.

In recent years, the research about seeking suitable impedance control policies for compliant behaviors

is going toward learning and imitation of impedance strategies of humans [9, 28, 10]. The learning of the

teacher’s arm impedance is not easy. Depending on the differences of task and the teaching interface, the

corresponding learning methods are also different.

In [29], the concept of teleimpedance was proposed to make the human impedance regulation skills ap-

plied for robot interacting with uncertain environments. In this case, a suitable human-machine interface

was used to provide the trajectory and stiffness references. Stiffness reference was computed using the elec-

tromyogram signals (EMG) recorded from the arm of the operator. However, as it is a real-time teleoperate

robot by a user, it did not learn the task for autonomous execution. Recently, [30, 31] not only used the sur-

face EMG to estimate demonstrator limb stiffness but also used the DMP method to encode both movement

trajectories and 1-DoFs stiffness profile (estimated from EMG) to achieve variable impedance skill transfer

and generalization.

Calinon et al. [28] derived variable stiffness for an active compliant controller from the demonstrations

of the kinematic profiles. The stiffness profile was shaped inversely proportional to the variance along the

trajectory [9]. This approach depends upon the assumption that a large position variety in demonstration

will not have a negative impact on the task execution which may not always be reasonable [10], especially in

the narrow task space (such as Minimally Invasive Surgery). In [32], the trajectory of the task was taught

using kinesthetic teaching firstly. When the kinesthetic profile of the task was learned, the teacher demon-

strated the forces using a haptic device while the robot was executing the learned motion. Then, the model

describing the desired contact forces was built, and used by the robot to determine the desired force during

the task execution. The teaching process was divided into two successive steps (kinesthetic teaching first

and then haptic teaching), and also used the off-line learning method to encode position and force profiles.

In addition, none of these works addressed the issue of execution stability of the learned variable

impedance model [33]. For the variable impedance control, stability must be guaranteed for all the pos-
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sible range of variation of the impedance parameters. This issue has been recently addressed in [34], wherein

a variable impedance control policy was proposed, by designing a tank-based admittance control strategy

and the impedance parameters all can be passively changed. The main idea of this method is to evaluate

the power balance of the robot and it ensures that the amount of energy pumped into the system is always

less than the dissipated energy, and thus the system remains passive. This approach analyzed the stability

for the cases that the reference trajectory is fixed throughout the motion [35].

According to the current research progress and present problems, the main contents in this paper are as

follows:

1) Firstly, we emphasize that the kinematic profile (the trajectory of task) is very important for complet-

ing tasks in some applications. Especially teaching large position deviation [9, 10] in a narrow task space

is not feasible, such as Minimally Invasive Surgery. Therefore, we propose a learning framework based on a

simple teaching interface, so as the stiffness and damping profile can be learned from demonstrations without

destroying the desired kinematic profiles (It is unnecessary to intentionally make a deviation from the teach-

ing trajectory). That also means there is no need to provide kinematic and compliant teaching separately,

the kinematic and 3-DoFs impedance profiles can be learned simultaneously from demonstrations.

2) Owing to an increasing number of robots are working on multiproduct and small-batch production

lines or providing a wide range of services to meet people’s daily needs, robots need to master new skills

frequently and rapidly, the learning speed of algorithms is an important evaluation metric for learning skills

from demonstrations. Therefore an effective sequential learning method is developed in this work, which

sequentially exploits the new input data of kinematic profiles and interactive forces to learn the control

model in demonstration phase. Then the learned controller is used to reproducing the robotic compliant

manipulation. After the demonstration phase (learning phase), the learned controller is fixed until the next

demonstration start. The proposed learning method does not require the time-consuming off-line training

process, and thus the robot learning system becomes high efficiency and easy using. In addition, the learning

process does not need a large number of samples, a control policy can be learned from one or more demon-

strations.

3) A force-based variable impedance learning process along the x, y and z axes is developed. More specif-

ically, the compliances along the three directions change independently which makes robot more flexible than

the previous works using uniform compliance changing in three directions.

4) Furthermore, the stability analysis and the corresponding constraints for the learned impedance pa-

rameters are presented. Therefore, the global asymptotic stability of variable impedance control can be

guaranteed through the stability considerations in the learning process, which allows the robot to safely

operate in the environments where human beings and robot share the workspace.

To validate the proposed learning framework, we test in three different experiments. The first experiment

illustrates the capability of the sequential learning algorithm in modeling kinematic profiles while the learned

model being able to generalize to unseen initial points and reach the desired position precisely. The second
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experiment shows the proposed method can learn variable impedance parameters (stiffness and damping

value) in selective directions based on the teaching forces. Meanwhile, the stability constraints of variable

impedance control are confirmed by the test. The third experiment shows how a unification controller can

be learned in a realistic task teaching.

The rest of the paper is organized as follows. Section 2 presents the control framework of this work. The

proposed interface for demonstrations and the learning framework of the compliance behaviors are described

in Section 3. In Section 4, we develop the global asymptotic stability conditions of the proposed methods.

Section 5 presents the experimental evaluations. Finally, the conclusion and future work are presented in

Section 6.

2. Controller and Problem Formulation

Impedance control is a very effective way of implementing the robotic compliant behavior, which makes

a manipulator equivalent to a multidimensional mass-spring-damper system with the desired impedance

parameters (inertia, stiffness and damping matrix). The goal of impedance control in the task space is to

maintain the relationship between the position error x̃ = xd − x and the exerted force Fe, the controller is

given by:

M ¨̃x = Fe −Bq ˙̃x−Kqx̃. (1)

where x and xd ∈ R3 represent the current and desired position of the robot end-effector, M , Bq, Kq ∈ R3×3

denote the desired inertia matrix, time varying damping matrix and time varying stiffness matrix respectively

[36]. M , Bq and Kq are symmetric and positive definite. In this work we assign a diagonal structure to the

stiffness matrix Kq = diag([kxq, k
y
q, k

z
q]
T ) by decoupling it. This is under an assumption that the positional

errors only result in force variations and won’t influence the orientation of the robot [10]. Fe ∈ R3 is called

external fore, disturbing force or teaching force, which is obtained by a six-axis force/torque sensor on the

robot end-effector in the teaching phase. But in the reproduction stage, the force Fe is real-time calculated

through formula (1) according to the learned impedance parameters, desired position and the current state.

Robot motion generation can be modeled by dynamic system (DS) technology [8] as

ẋ = f(x) (2)

where x and ẋ are recorded in every sample interval ∆t, f(.) is a nonlinearly differentiable function and is

estimated from neural network modeling in motion learning stage (Section 3.2). The input to the learning

process is a datasetD = {xn, ẋn} , n ∈ [1, N ], where xn and ẋn indicate the nth collected position and velocity

data. Then adopting algorithm to the DS is to learn the mapping f(·) : x → ẋ. Accordingly, the equation

(2) can be rewrited to discrete representation as ẋn−1=xn−xn−1

∆t = f(xn−1) or xn = f(xn−1).∆t+xn−1. Also

the desired points can be calculated by xnd = f(xn−1
d ).∆t + xn−1

d in the reproduction stage, where x0
d = x0

is the initial position of the robot end-effector. And the nth position/velocity/acceleration errors between
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desired point and current position are computed as follows




x̃n = xnd − xn = G(xn−1
d )− xn ← Set : G(xn−1

d ) = f(xn−1
d ) ·∆t+ xn−1

d

˙̃xn = ẋnd − ẋn = f(xnd )− ẋn = f [G(xn−1
d )]− ẋn

¨̃xn = ẍnd − ẍn = ḟ [G(xn−1
d )]− ẍn.

(3)

Substituting the equation (3) into (1), we can obtained a unified control strategy which is combines

kinematic (xd) stiffness and damping profile as

Fne =M [ḟ [G(xn−1
d )]− ẍn] +Bn.∆t[f [G(xn−1

d )]− ẋn]

+Kn.∆t[G(xn−1
d )− xn]

(4)

where M is known in this paper, f(.), Bn.∆t and Kn.∆t are unknown and needed to be estimated in the

learning phase. And the nth robot end-effector position xn is acquired by the joint angles and the forward

kinematics. xnd can be calculated by the learned f(.) and the previous n − 1th position xn−1
d . The serial

desired positions {xnd , n ∈ [1, N ]} of the robot end-effector determine the robot motion. The impedance

parameters Bn.∆t and Kn.∆t determine the compliant behaviors of the robot when subjected to external

disturbance. In this paper, we formulate the problem to learning stability unification controller with ”motion

generation f(.) (produce kinematic profiles xnd )” and ”variable impedance skills (Bn.∆t and Kn.∆t)” from

human demonstrations.

3. Learning the Unified Control Strategy from Demonstrations

We start by giving an overview of our robotic compliant manipulation learning system. As illustrated in

the schematic of Fig. 2, the system is divided into two phase (learning and reproduction). In the first phase

(learning), demonstrations of the task are online collected to sequentially learn the motor skills and impedance

parameters (variable stiffness and damping). In the reproduction phase, the learned motion generation and

compliant skills (variable impedance parameters) are used for reproducing the robotic compliant behavior.

This section shows how we address these challenging aspects by proposing a novel RLfD structure that

combines a simple demonstration interface, neural network learning, and a force-based variable impedance

learning process for reproducing compliant manipulation.

3.1. Interface for Demonstrations

In order to teach the robot with the desired kinematics and compliance, the teacher should communicate

with the robot such that the robot knows what compliant behavior should be executed. We use a simple

and low-cost interface for the demonstration collection, which only depends on the robot arm equipped

with a six-axis force and torque (F/T) sensor (Barrett Technology, Inc) at the endpoint (considered as the

wrist center), see Fig. 3. In the teaching stage, the teacher shows the desired kinematic profile with one

hand meanwhile teacher’s another hand physically demonstrates the appropriate force to the F/T sensor at

corresponding direction. Meaning that while the teaching is start, the robot is set into gravity compensation
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Figure 5: Collection of four demonstrations through kinesthetic teaching. A teacher demonstrates the robot how to places a

ball in the desired position from four different starting points.
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Figure 6: Generalization to unseen situations. Execution of the task from 12 arbitrary initial points after learning from 4

demonstrations.
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