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Abstract— Visual Simultaneous Localization and Mapping
(SLAM) systems assume a static world. They usually fail
under adverse weather conditions. In this paper, we propose
a robust monocular SLAM system that is able to work under
rainy conditions in urban environments reliably. To recover
camera ego-motion from images with rain streaks, we apply
a superpixel-based image content alignment method for the
static background modelling. With coarse outputs estimated
through averaging temporal matches, image details are recov-
ered by a Convolutional Neural Network (CNN). Based on the
statistic distribution of intensity variance between original and
reconstructed image pairs, a robust and noise-sensitive weight
function is explored for rejecting outliers when estimating
camera poses. Quantitative evaluation results on the CARLA
and synthetic KITTI datasets demonstrate the reliability of the
proposed system and its superiority over the state-of-the-art
approaches.

I. INTRODUCTION

Ego-motion estimation and 3D reconstruction are essential
capabilities for autonomous driving. A robust visual state es-
timator provided by Simultaneous Localization and Mapping
(SLAM) is exceptionally significant for autonomous navi-
gation. It can serve as an alternative to Global Positioning
System (GPS), especially under an urban environment with
adverse natural conditions (e.g. heavy rainfall) [1]. Many
approaches were proposed for monocular camera tracking
and localization, while very limited works discuss how to
robustly estimate ego-motion under adverse weather con-
ditions, such as rainy environments, leaving it a still open
problem.

As most of the state-of-the-art methods for monocular
SLAM are proposed under the static world and moderate
weather assumptions [2], rainy weather conditions raise
incredible challenges, which lead these methods to failure.
The difficulties for a visual SLAM system under such
environments are various. Several typical cases are shown
in Fig. 1. Firstly, rain streaks and moisture could generate
artefacts over the background, so that reliable and repeatable
features could not be extracted. Such artefacts would degrade
the robustness of the general feature tracking module in
a SLAM system. Secondly, as rain streaks could change
the pixel intensity, some false features would be extracted,
which would corrupt the consistency of the system and
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(a) Challenges for visual SLAM in rainy environment, including
false-positive corners, mismatch and wrong descriptor.

(b) A sample result of the proposed system, blue line is
trajectory estimation, gray points are sparse feature map.

Fig. 1: Typical challenges for visual SLAM under rainy
conditions and sample result of our proposed system.

cause tracking failure. Thirdly, due to the visually noticeable
distortion effect, feature mismatching could happen, so that
the long-term robustness of the SLAM system would be
degraded.

In this work, we propose a complete monocular SLAM
system for reliable up-to-scale pose estimations in the rainy
urban scenarios. The proposed system firstly aligns the image
content at superpixel level. With temporal matching results,
the static background is modelled by average weighted
tensors in a sliding buffer. The coarse reconstructed images
are then refined by a convolutional neural network. Finally,
camera poses can be estimated reliably by weighting tracked
features according to their intensity consistency. The contri-
butions of this paper are listed as follows:

1) We propose a complete monocular ego-motion esti-
mation system that could work reliably in rainy urban
environments.
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2) We introduce a robust approach to integrate the image
reconstruction with visual state estimation.

3) We carry out various experiments to demonstrate the
effectiveness of our proposed method.

The remainder of this paper is structured as follows:
In Section. II, related work about image derain and state
estimation for challenging environments has been reviewed.
In Section. III, an overview of our system is illustrated. In
Section. IV and Section. V, we describe the derain method
and the ego-motion estimation algorithm respectively. In Sec-
tion. VI, experimental results and discussions are presented.
Conclusions and future work are drawn in the last section.

II. RELATED WORK

A. Image Sequence Rain Removal

Eliminating rain effect has long been a prevalent problem
in the image processing community. For both single-shot
image and continuous video sequence, numerous methods
have been proposed to recover a clearer vision under this
challenging environment.

For single-shot image rain removal or segmentation, Kang
et al. [3]. firstly stated the single image derain problem
and modelled rain streaks as classified atoms. Luo et al.
[4] proposed to use discriminative sparse coding to better
segment rain streaks from the original image. Li et al. [5]
alternatively suggested learning the static background and
dynamic rain streaks via Gaussian Mixture Model (GMM).
Recently, deep learning based method [6], [7] became popu-
lar for image rain-removal problems. Zhang et al. [8] utilized
a Generative Adversarial Network (GAN) to recover the
background masked by rain streaks on raw images.

For continuous video-based rain removal, early methods
[9], [10] usually modelled the background via image recon-
struction to provide sufficient prior information. Chen et al.
[11] managed to recover image details from a Convolutional
Neural Network based on temporal image content alignment.
Ren et al. [12] proposed to introduce low-rankness into rain
detection.

B. State Estimation For Challenging Environments

Several approaches were initially designed [13], [14] to
use a filter-based backend for pose optimization. Indirect-
based methods such as [15], [16], were proposed to sparsify
the system by keyframe selection and non-linear optimiza-
tion. On the other hand, direct-based methods [17], [18],
[19], seek solutions via optimizing photometric error directly
on the image input. However, all these methods assume a
static world, which is not suitable for specific tasks such as
localization under the rainy urban scenario.

For state estimation under challenging urban scenario, Pas-
coe et al. [20], [21], [22] proposed to minimizing normalized
information distance (NID) instead of photometric cost in
direct visual odometry system, which achieved remarkable
results under challenging illumination condition. Sun et al.
[2], [23] provided a motion removal approach to handle
foreground dynamic instances. Park et al. [24] evaluated
the performance of direct visual odometry with changing
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Fig. 2: System flowchart for the proposed system. The
proposed system is consisted of two modules: rain removal
and ego-motion estimation.

illumination. However, they did not consider adverse natural
weathers such as heavy rainfall and validated their algo-
rithm under such environment. Another solution is to take
advantage of a pre-built map and reduce the challenges by
changing it into a localization problem. Porav et al. [25]
introduced an adversarial network for camera localization
under challenging conditions. Naseer et al. [26] proposed a
framework for visual localization cross seasons. However, on
the one hand, such localization methods based on a single-
shot image are not fast and accurate enough to serve real-time
vehicle control. On the other hand, considering a map-denied
environment where no prior information is provided, visual
odometry or SLAM could provide a more reliable relative
pose estimation.

III. SYSTEM OVERVIEW

The overall system can be divided into two main modules:
the first is rain layer segmentation and background recovery
for the incoming image; the second is tracking current
camera pose and incrementally optimizing local structure.
Both modules are based on recent state-of-the-art methods
[11], [16]. We then adapt and integrate the two modules as
a complete system for robust visual SLAM.

Fig. 2 illustrates the framework of the proposed system.
With RGB images as input, we use a superpixel-based
image content alignment method to occlude high-frequency
noise (e.g. rain streaks). Then image details are recovered
via a compensation network. Section. IV explains how the
proposed system works in detail.

The camera ego-motion estimation module is consisted of
two submodules, tracking and mapping. Firstly, we sample
reliable features from extracted corners following the statistic
distribution of intensity variance between the reconstructed
image and the raw input. With a robust initialization strategy,
camera poses are estimated coarsely by tracking the last
frame, which is then optimized with the local map by
minimizing reprojection error. Finally, a mapping module
manages all the keyframes and landmarks, culling outliers
and maintain the sparse feature map.
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Fig. 3: Comparison of different alignment methods. Top:
the alignment result from global homography transform;
mid: superpixel segmentation for sample input; bottom: local
detail comparison on three selected positions. While the
first two columns are source and target patches, the last
two columns are alignment results from homography-based
method and superpixel-based method.

IV. IMAGE SEQUENCE RAIN REMOVAL

A. Temporal Content Alignment

For the rain removal module, our system first align the
image content to take advantage of temporal visual informa-
tion. There are two different approaches for image alignment:
global-based approach and pixel-based approach.

Assuming partial planarity of the scene, the global
approach estimates pixel-to-pixel transform between two
frames via a set of matched features, which is the well-
known homography transform [27]. Given a sequential image
pair Ik, Ik+1, the global-based approach utilizes distinctive
features [28], [29], [30] as sparse representation for a single
image. Extracting feature points and computing their de-
scriptors, temporal matching cross frames could be applied
to this image pair, which generates two sets of matched
correspondence set Xk and Xk+1. With robust estimation
method such as RANSAC [31], a global homography trans-

form can be modelled from these two sparse feature sets,
which transforms each pixel in the source frame to the target
frame, denoted as:

xik = Hk,k+1x
i
k+1. (1)

However, the planar assumption is not a good approxi-
mation and lead to misalignment across frames, as shown
in Fig. 3. To overcome this issue, we adopt a superpixel-
based solution [11] for temporal image content alignment.
Superpixel is generally a set of image pixels that share
photometric and geometric similarity. Here a sampling-based
method [32] is used in the proposed system for superpixel
segmentation.

Denoting the i-th superpixel extracted in frame k as
P ik ∈ P , a bounding box Bik is created for each superpixel
P ik on extraction. Bik will then be extended as a wider
window on neighbourhood frames in a temporal sliding
buffer, denoted as W i

k. To search the best matching patch
in W i

k, normalized cross-correlation (NCC) score is selected
for accurate template matching, formulated as Eq. 2. As NCC
is the optimal method statistically [33], it is very suitable to
apply it under a rainy scene for robust superpixel matching.

ENCC(Pk,d) =

∑
q∈Pk

I(q)IR(q− d)√∑
q∈Pk

I(q)2
∑

q∈Pk
IR(q− d)2

. (2)

Therefore an optimal location of matching patch could be
derived by maximizing NCC score between two patches as
in Eq. 3, where d̂ is the optimal location estimated for patch
matching.

d̂ = arg max
d∈Wk

ENCC(Pk,d)

= arg max
d∈Wk

∑
q∈Pk

I(q)IR(q− d)√∑
q∈Pk

I(q)2
∑

q∈Pk
IR(q− d)2

.
(3)

B. Rain detection and background reconstruction

Based on the matching result through a sliding window, we
then generate a coarse reconstruction patch and rain streak
segmentation mask by taking a weighted average of matched
tensors. As formulated in Eq. 4, st is optimal matching NCC
score for source template in the t-th frame in the sliding
window.

Ikmean(P ik) =
1

n

∑
t,t

I(P it + d̂t)
∑
j sj

st
. (4)

The sample reconstructed images are shown in Fig. 3.
Compared to a global-based alignment method, the proposed
method better aligns images in details. However, certain
blur and distortion on the boundary with high gradient can
be noticed. Therefore, for the consideration of improving
robustness and accuracy of state estimation, a CNN is utilized
for better recover details of the current captured frame.
The architecture of the compensation network is designed
following [11] and illustrated in Fig. 4.
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Fig. 4: CNN architecture for detail recovery. The output
image is generated from the averaging layer and detail layer.

As demonstrated in Fig. 4, a three-layer feature is fed
to the input of the neural network, which is connected to
four convolutional layers with kernel sizes of 11, 5, 3, 1
respectively. A rectified linear unit is applied to each layer’s
output. With the compensation image Icomp generated by the
network, final reconstructed image Î and mask for rain streak
are derived as Eq. 5:

Î = Imean + Icomp, M̂rain = Î − Iraw. (5)

V. POSE ESTIMATION

In this section, we derived a statistic distribution for
the intensity variance between reconstructed image and raw
input, explained in Section. V-A. In addition, Section. V-B
and Section. V-C explain how we introduce this property into
initialization and pose estimation.

A. Intensity Consistency Factor

To obtain a more robust pose estimation result, we propose
to utilize features in reconstructed images in a probabilistic
manner, instead of simply removing features according to
masks generated from rain removal module.

A typical histogram of intensity variance between the re-
constructed image and raw image with rain streaks is shown
in Fig. 5. As general SLAM system assumes a Gaussian
distribution of error, some robust kernel functions such as
Huber function [34] are more commonly used. However, it
is noticeable that normal distribution does not well describe
the distribution of intensity variance, which represents the
probability of a pixel belonging to rain layer. Two distribu-
tion forms that are more sensitive to outliers are compared.
One is Gamma distribution [35] and another is t-distribution
[36]. Here we select t-distribution as the probabilistic rep-
resentation of pixel intensity variance, which better covers
the data with large variance and low occurrence. Therefore
it is more suitable to model the images reconstructed by
rain removal module. For monocular initialization, pixels are
sampled assuming distribution x ∼ P (p). Additionally, a
weight function could be derived as:

w(r) =
log p(r)

∂r

1

r
=

υ + 1

υ + ( rσ )2
, (6)
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Fig. 5: Comparison of different distribution forms for image
intensity variance.

Algorithm 1: Pose Initialization Algorithm
Data: Pfeat, P (p).

1 Phomo = Pfeat, Pfund = Pfeat
2 for i← 1 to max iter do
3 Xhomo, Xfund =

sample features(Phomo, Pfund, P (p))
4 sH,H = compute homography(Xhomo)
5 sF,F = compute fundamental(Xfund)
6 record best score(sF, sF best, sH, sH best)
7 Pfeat = remove outliers(Pfeat, )
8 end
9 r = compute score(sF best, sH best)

10 M = select best model(r,Hbest,Fbest)
11 if check disparity and epipolar(Pfeat,M ) then
12 Tinit = recover pose(M)
13 Pmap = triangulation(Pfeat, Tinit)
14 global optimization(Tinit, Pmap)
15 end
16 else
17 return False
18 end
19 return Tinit, Pmap

where r = ∆I(p) = Î(p)− Iraw(p) represents for intensity
variance between the reconstructed image and raw image.
υ is the degree of t-distribution and σ is the variance pre-
estimated from the training set.

B. General Pose Estimation

When a frame is processed by the rain layer segmen-
tation module, it will be received by the pose estimation
module. As we mentioned before, image noise introduced
by rain streaks and aggressive averaging gradually corrupted
geometry model for initialization, therefore we extend raw
initialization module proposed in [16] to be more robust
and fast to recover initial scene structure. Our initialization
algorithm is illustrated in the pseudo-code Algorithm. 1.

For a more robust initialization, pixels are sampled accord-
ing to the distribution mentioned in Section. V-A. Given an
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Fig. 6: Sample results of derain module. The first and third
rows are images captured in rainy weather; the second and
forth rows are reconstructed results. Images in the first two
columns are from CARLA dataset, while the right two
columns are from synthetic KITTI dataset.

image captured in rain, pixels such as endpoint of rain streaks
are very likely to be detected as corners. While rain removal
module provides a reflective rain mask, contributions from
these features will be reduced as they are covered by the low
probability area and less likely to be sampled. Then we con-
currently estimate the homography model and fundamental
model in a RANSAC scheme. For each iteration step, outliers
are filtered out based on Chi-Squared Test assuming one-
pixel variance. During the loop, we keep a record of the best
model respectively, and finally, an initialization model M is
selected based on the score of homography and fundamental
matrix estimation. We follow [16] to use a combined score
to determine which model is better, formulated as:

r =
sH

sH + sF
, (7)

where sH and sF are the scores for homography and
fundamental matrix, respectively. If no model could be
successfully estimated, the system will be reset and wait for
the next frame. Otherwise, the initial motion and structure
will be recovered from the inliers that have enough stereo
disparity and satisfy epipolar constraint.

C. Camera Tracking and Mapping

For estimating current camera pose, matches are searched
within a window in the neighbourhood frame. Pose estima-
tions by minimizing reprojection error are performed with
the last frame and with a queue of past keyframes. The error
function could be derived as following:

E =
∑
i

1

2
wi‖p′i − πk(Tk,jπ

−1
j (pi))‖22, (8)

where Tk,j is the relative transform between k-th and j-
th frames, respectively. πk is the projection function of k-
th frame. Unlike common SLAM systems that use robust

Fig. 7: ATE comparison on Carla01.

kernel such as Huber to reduce the significance of outliers
on the optimization result, we derived our weight function
from a t-distribution as explained in Section. V-A. Therefore,
minimizing reprojection error, optimal pose estimation could
be solved by iterative least square:

Tk,j = arg min
Tk,j

1

2

∑
i

υ + 1

υ + (∆I(p)/σ)2

· ‖p′i − πk(Tk,jπ
−1
j (pi))‖22.

(9)

After pose optimization, the frame will be delivered to the
mapping module if it satisfies keyframe criteria. The mapping
module will perform a global bundle adjustment to optimize
structure and motion simultaneously. With the information
of final optimization error and covisiblity relationship, re-
dundant keyframes and landmarks or outliers are removed
from the map.

VI. EXPERIMENTAL RESULTS AND DISCUSSIONS

To evaluate the performance of the proposed system, we
carry out experiments on synthetic image sequences and sim-
ulation respectively. We use CARLA [37] as the simulation
platform, which is able to generate realistic image data under
various weather conditions with groundtruth camera poses. In
addition, we validate our method on KITTI odometry dataset
with synthesized rain effect. For qualitative evaluation, we
provide raw images with weather conditions varies in degree
of rain and time of the day, along with reconstruction results
generated by rain removal module, shown in Fig. 6.

A. CARLA simulation

For comparison, we use ORB SLAM on the image se-
quence captured in the rainy environments. While it fails
on all the raw sequences with the same setting as the
proposed system, we change the setting of ORB SLAM
and extract 3 times more features on each frame compared
to the raw setting, which is denoted as ORB SLAM(3x).
This is to ensure a proper initialization and more robust
feature tracking for ORB SLAM under rainy weather, which
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TABLE I: Comparison of absolute trajectory error (ATE) (m) on CARLA Dataset. × means tracking failure. ORB SLAM(3×)
is results from ORB SLAM with 3 times more features, with details in Section. VI-A. Statistic shows our system outperforms
ORB SLAM on all the sequences on accuracy and stability.

Seq Description Proposed ORB SLAM ORB SLAM(3×)

RMSE Mean Median S.D. RMSE Mean Median S.D. RMSE Mean Median S.D.
00 heavy rain noon 0.3446 0.2966 0.3233 0.1754 × 2.3256 0.6511 0.9905 2.1041
01 heavy rain noon 1.3681 1.1239 1.0332 0.7801 × 2.6875 2.5325 2.6253 0.8993
02 heavy rain noon 10.095 8.2209 5.8073 5.8590 × ×
03 heavy rain noon 1.9850 1.8288 1.6692 0.7719 × 13.977 10.982 7.9535 8.6470
04 mid rain noon 2.0217 1.7848 1.6961 0.9497 × 3.2847 2.9619 2.7062 1.4200
05 mid rain sunset 0.3899 0.3282 0.2941 0.2106 × 3.9880 3.3797 3.8821 2.1170
06 mid rain sunset 1.9790 1.8259 1.6965 0.7632 × ×
07 heavy rain sunset 3.0568 2.5309 2.0747 1.7142 × 8.0926 6.9565 8.7163 4.1349

TABLE II: Comparison of Translation relative pose error (RPE) (m/s) on CARLA Dataset. The comparison demonstrates
that our system have less drift than ORB SLAM.

Seq Description Proposed ORB SLAM ORB SLAM(3×)

RMSE Mean Median S.D. RMSE Mean Median S.D. RMSE Mean Median S.D.
00 heavy rain noon 0.0618 0.0285 0.0212 0.0548 × 0.0935 0.0463 0.0246 0.0812
01 heavy rain noon 0.0342 0.0271 0.0221 0.0209 × 0.0470 0.0383 0.0315 0.0273
02 heavy rain noon 0.0418 0.0331 0.0274 0.0255 × ×
03 heavy rain noon 0.0421 0.0277 0.0194 0.0317 × 0.4606 0.1299 0.0459 0.4419
04 mid rain noon 0.0487 0.0320 0.0239 0.0367 × 0.1086 0.0585 0.0358 0.0915
05 mid rain sunset 0.0526 0.0307 0.0235 0.0427 × 0.0588 0.0459 0.0362 0.0367
06 mid rain sunset 0.0487 0.0283 0.0229 0.0397 × ×
07 heavy rain sunset 0.0322 0.0268 0.0230 0.0178 × 0.0493 0.0395 0.0324 0.0295

TABLE III: Comparison of Rotation RPE (deg/s) on CARLA Dataset. The comparison demonstrate that our system is more
consistent in rotation.

Seq Description Proposed ORB SLAM ORB SLAM(3×)

RMSE Mean Median S.D. RMSE Mean Median S.D. RMSE Mean Median S.D.
00 heavy rain noon 0.3192 0.1813 0.1033 0.2627 × 2.3256 0.6511 0.9905 2.1041
01 heavy rain noon 0.1268 0.1061 0.0917 0.0695 × 0.1926 0.1599 0.1351 0.1074
02 heavy rain noon 0.1175 0.1009 0.0886 0.0602 × ×
03 heavy rain noon 0.0916 0.0758 0.0686 0.0514 × 1.6866 0.3770 0.1239 1.6440
04 mid rain noon 0.1660 0.1189 0.0985 0.1159 × 0.3290 0.1954 0.1425 0.2647
05 mid rain sunset 0.1430 0.1066 0.0877 0.0953 × 0.2225 0.1696 0.1284 0.1441
06 mid rain sunset 0.1932 0.1175 0.0967 0.1534 × ×
07 heavy rain sunset 0.1256 0.1050 0.0902 0.0689 × 0.1895 0.1547 0.1275 0.1095

in turn succeeds in some sequences. The metrics absolute
trajectory error (ATE) and relative pose error (RPE) are used
for quantitative evaluation. ATE measures the accuracy of
trajectory estimation of the whole system, while RPE better
demonstrates the drift of a SLAM system.

Pose estimation accuracy and robustness are evaluated and
shown in Tab. III. ORB SLAM without changing setting
fails for all the sequences, while the proposed system could
provide the most accurate and robust result. Additionally,
with more features extracted to achieve robustness, ORB
SLAM(3×) still fails on two sequences. This is mainly
because the noise introduced by heavy rain to the image
is not neglectable and therefore affects the accuracy and
robustness, especially the initialization procedure, of general
feature-based SLAM method, which assumes a static world.
On the contrary, the proposed system not only uses a derain
module in the front-end, but also better culls outliers with

Fig. 8: Accuracy variance comparison on CARLA01,
CARLA-04, CARLA05 and CARLA07.

a noise-sensitive weight function. Besides the accuracy and
robustness, trajectories estimated by the proposed system en-
countered the least drift according to translation and rotation
RPE, which shows the consistency of our methods under

1295



Fig. 9: Comparison of trajectories on CARLA01, CARLA03,
CARLA05, CARLA07 respectively.

rainy weather.

Fig. 9 compares the estimated trajectories against ORB
SLAM(3×). Besides the fact that the proposed system
generates a more accurate trajectory, some common failure
situations for general SLAM system can be concluded. As
in all the displayed trajectories, it is noticeable that even the
number of features is increased, ORB SLAM(3×) is not able
to correctly initialize the system within a small amount of
frames. On the contrary, a robust sampling strategy based
on photometric distribution helps our system initialized fast
within several frames. In sequence CARLA03, a false posi-
tive loop-closure detection causes end part of the trajectory
deviating from groundtruth, which is also a side effect of
visual SLAM brought by heavy rain fall. In contrast, our
system reconstructs the background of the images, thus it is
less likely to encounter wrong loop detection.

To demonstrate the long-term consistency and accuracy
of the proposed system under adverse rainy condition. Fig. 7
shows the ATE of each frame and histogram of ATEs for both
proposed and ORB SLAM(3×) on the CARLA01 sequence.
For most of the frames, our system achieves better estimation
results. In addition, less scale drift is encountered by the
proposed system compared with ORB SLAM(3×). There-
fore a better trajectory estimation is maintained. Variation
from errors implicate the proposed system is capable of
providing a more consistent estimation, even under adverse
rainy weather and with a normal number of features. The
quantitative evaluation results are illustrated in Fig. 8, where
the proposed system keeps low variances and meanwhile
accurate estimations compared to ORB SLAM(3×). This is
mainly because visual slam frameworks such as ORB SLAM
lack effective methods to distinguish outliers.

B. Synthetic KITTI Dataset

The synthetic dataset is based on KITTI odometry [38]
RGB image sequence, where raw images are not captured
under adverse weather conditions. We synthesized rain effect
with commercial editing software Adobe After Effect [39],
which was then added to the raw images. With several effect
parameters such as raindrop size, wind strength, opacity and
rain direction adjusted, different realistic rainy conditions
were created for thorough evaluation. Sample synthetic im-
ages, with rain detection and image reconstruction results,
are shown in Fig. 6.

TABLE IV: Comparison of RMSE (m) of translational
ATE on synthetic KITTI. × means tracking or initialization
failure. Here we use the results of ORB SLAM on raw
images for reference (the last column) to demonstrate the
stability of our system.

Seq Environment Proposed ORB SLAM ORB SLAM(ref)
00 heavy 7.14 × 6.68
01 heavy × × ×
02 mid+oblique 24.33 × 21.75
03 mid 3.68 × 1.59
04 heavy 2.58 × 1.79
05 heavy+wind 9.79 × 8.23
06 mid 14.71 × 14.68
07 mid+oblique 5.14 × 3.36
08 mid+wind 46.30 × 46.58
09 mid+oblique 8.52 × 7.62
10 light 9.37 × 8.68

To further demonstrate the accuracy of the proposed sys-
tem, we compare the trajectory estimated from ORB SLAM
on raw image sequences, with results from ours on images
with rain effect. As shown in Tab. IV, our system could
provide competitive pose estimations even against results
estimated from , which indicates the stable performance of
our system.

VII. CONCLUSIONS

In this paper, we demonstrated the challenges for visual
SLAM under rainy urban scenario and propose a novel
system for robust and accurate pose estimation to tackle
these problems. We adapted both rain removal and visual
state estimation modules and integrate both as a complete
system. With quantitative evaluation, our system is examined
to provide robust and accurate trajectory estimations under
the scenario where state-of-the-art methods would usually
fail.

Although our system shows an outstanding performance
on the datasets, some limitations leave us some space for
improvement. For instance, feature tracking module could
provide useful anchors for template matching, which might
improve current alignment result. Additionally, introducing
inexpensive inertial measurement unit cloud produce a more
smooth prior and robust pose tracking.
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