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Generalized Linear Quaternion Complementary
Filter for Attitude Estimation From Multisensor

Observations: An Optimization Approach
Jin Wu , Member, IEEE, Zebo Zhou , Hassen Fourati, Rui Li, Member, IEEE,

and Ming Liu, Senior Member, IEEE

Abstract— Focusing on generalized sensor combinations, this
paper deals with the attitude estimation problem using a linear
complementary filter (CF). The quaternion observation model
is obtained via a gradient descent algorithm. An additive
measurement model is then established according to derived
results. The filter is named as the generalized CF where the
observation model is simplified as a linear one that is quite
different from previous-reported brute-force nonlinear results.
Moreover, we prove that representative derivative-based opti-
mization algorithms are essentially equivalent to each other.
Derivations are given to establish the state model based on
the quaternion kinematic equation. The proposed algorithm is
validated under several experimental conditions involving the
free-living environment, harsh external field disturbances, and
aerial flight test aided by robotic vision. Using the specially
designed experimental devices, data acquisition and algorithm
computations are performed to give comparisons on accuracy,
robustness, time-consumption, and so on with representative
methods. The results show that not only the proposed filter can
give fast, accurate, and stable estimates in terms of various sensor
combinations but also produces robust attitude estimation in the
scenario of harsh situations, e.g., irregular magnetic distortion.

Note to Practitioners—Multisensor attitude estimation is a
crucial technique in robotic devices. Many existing methods focus
on the orientation fusion of specific sensor combinations. In this
paper, we make the problem more concise. The results given in
this paper are very general and can significantly decrease the
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space consumption and computation burden without losing the
original estimation accuracy. Such performance will be of benefit
to robotic platforms requiring flexible and easy-to-tune attitude
estimation in the future.

Index Terms— Attitude estimation, complementary filter, mul-
tisensor fusion, quaternion optimization, robotics.

I. INTRODUCTION

THE development of consumer electronics brings a world-
wide mania in cell phones, smart wearables, interactive

devices, and so on [1]–[3]. Such electronic products indeed
improve the quality of our living. As a matter of fact, each
product is a mixture of many recent technological advances.
Among all these techniques, the sensor fusion is of importance
since it gives state estimation of the body’s motion from
multisensor observations [4]–[6]. Attitude estimation, as part
of the overall sensor fusion module, plays a big role in
detecting object’s attitude and further produces signals for gait
analysis and gravity sensing [7], [8]. The attitude estimation
techniques will provide key bases for later robotic estimation
and planning [9].

Not only consumer electronics but many other profes-
sional applications also have increasing demands on attitude
estimation [10], [11]. For instance, one satellite needs to be
stabilized on the orbit and to achieve this, the attitude estimator
should give accurate estimates for the control tasks [12].
Moreover, such applications can also be operated under harsh
external conditions, i.e., strong vibration, sudden external
acceleration, irregular magnetic distortion, ventilation caused
by rotors, and so on [13], [14], which make the attitude
estimation more challenging [15]–[17]. In engineering prac-
tice, a navigation system should have sufficient redundant
computation resources to ensure the robustness of the system
when emergence happens [18]. For example, an unmanned
aerial vehicle (UAV) system needs to act quickly for fail-
safe when some incidents take place such as motor failure,
GPS outage, and main controller failure [19], [20]. This, in a
degree, requires the navigation part to be computationally
efficient.

In fact, Kalman filter (KF) [21] is an optimal filtering
approach in the sense of minimum mean squared error.
Although other filtering approaches, e.g., H∞ filter [22], have
been widely spread, KF still remains its definite coverage
in industrial applications. The attitude estimation can be

1545-5955 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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efficiently achieved via KF-related algorithms [23]. How-
ever, conventional KF methods still have some drawbacks as
follows.

1) Classical KF requires the state and observation models
to be linear. In addition, the noise sources for the two
models should be white Gaussian and uncorrelated.

2) Although many techniques have been developed to
deal with nonlinearities, e.g., the extended KF [24],
the unscented KF [25], and so on [26], they will signifi-
cantly increase the computational burden.

3) In principle, a three-order KF can already obtain
good attitude estimates [27], but for engineering
requirements, some KF-based attitude estimators are
designed to accommodate high-dimension observation
models [15], [28] for augmented estimation, which
makes the filtering time-costly.

Complementary filter (CF) approaches are popular alter-
natives for low-cost platforms with need of attitude
estimation [29]–[32]. Associated thoughts have been pro-
posed for many years [33]. Recent advances mainly
focus on the combination of magnetic, angular rate,
and gravity (MARG) sensors, i.e., the magnetometer,
gyroscope, and accelerometer. Marins et al. [34] uses the
Gauss–Newton algorithm (GNA) to obtain the quaternion
solution to the accelerometer–magnetometer attitude deter-
mination. Another method using the error cross product
is studied by Euston et al. [35] and Mahony et al. [36].
Madgwick et al. [37] give another point of view where the
gradient descent algorithm (GDA) is adopted. In the similar
way, Tian et al. [38], [39] proposed the method based on
improved GNA (IGNA) while Fourati et al. [40], [41] use
the Levenberg–Marquardt algorithm (LMA). After attitude
determination from vector observations, these methods jointly
employ the linear CF (LCF) as the attitude observer.

It can be seen that these advances mainly face the atti-
tude solution from the accelerometer–magnetometer com-
bination. In fact, this is a specific case of Wahba’s
problem [42], [43]. This leads to a new CF algorithm devel-
oped by Marantos et al. [19] which uses the singular value
decomposition (SVD [44], [45]) as Wahba’s solution, which
compensates for the gyroscope’s random drift. However,
Wahba’s problem will have two solutions when there is
only one vector observation that makes the attitude solution
ambiguous at the same time [43], [46].

All the above-mentioned methods generate efficient attitude
estimation but they have some joint or respective disadvan-
tages as follows.

1) They just focus on almost the same sensor combination,
i.e., MARG sensors. Generalized sensor combinations
under optimal framework are not well studied.

2) For GDA, IGNA, and LMA, brute-force use of the
optimization will make the algorithms computationally
expensive, i.e., some mathematical internals should be
investigated further.

Inspired by the above-mentioned representative methods
along with their advantages and disadvantages, this paper deals
with a novel CF scheme whose main contributions are as
follows.

1) Using quaternion representation, the generalized attitude
estimation is solved using GDA. Various strapdown sen-
sors such as accelerometer, magnetometer, camera, sun
sensor, nadir sensor, and so on can be efficiently fused.
The architecture is derived to be additive and linear,
which is simple for implementation and fault detection.

2) With finding in this paper, previous derivative-based
optimization methods for attitude estimation are proven
to be equivalent to each other.

Experiments on robotic platforms are designed and carried out
which verify the proposed filter’s effectiveness and advantages
compared with representative methods.

This paper has the following arrangement of contents.
Section II introduces the proposed problem formulation of the
generalized sensor fusion from vector observations. Section III
contains the proposed GDA method for attitude determination
from strapdown sensors. Section IV involves the proposed CF
design including the basic structure, robustness ensurance, and
some further discussions of mathematical properties. Hard-
ware, experiments, and results are presented in Section V,
showing the effectiveness of the proposed filter with respect to
reference device and representative methods. Section VI gives
the concluding remarks.

II. GENERALIZED SENSOR FUSION

For a multisensor combination on a rigid platform, its fusion
equations can be given by

⎧
⎨⎨⎨

⎨⎨⎩

Db
1 = C Dr

1

Db
2 = C Dr

2· · ·
Db

n = C Dr
n

(1)

where Db
i = (Db

x,i , Db
y,i , Db

z,i )
� denotes the i th vector obser-

vation in the body frame b while Dr
i = (Dr

x,i , Dr
y,i , Dr

z,i )
�

denotes the i th vector observation in the reference frame r .
C stands for the direction cosine matrix (DCM). The
above-mentioned equation can be converted to a least-square
loss function

J (C) =
n�

i=1

�
�C Dr

i − Db
i

�
�2

(2)

with the aim of

arg min
CC�=C�C=I ,det(C)=+1

J (C) (3)

where I is the identity matrix with proper dimension and � · �
is the simplification of the Euclidean norm. A possible solution
for this problem using SVD is given in [44]. When the weights
of various sensors are concerned, the problem will be identical
to Wahba’s problem [42], such that

arg min
CC�=C�C=I ,det(C)=+1

n�

i=1

ai
�
�C Dr

i − Db
i

�
�2

(4)

where ai denotes the positive weight of the i th sensor with
the property of

�n
i=1 ai = 1. Wahba’s solutions include

a variety of famous algorithms, e.g., QUEST, FOAM, and
SVD [45], [47], [48]. A recent fast solver FLAE maintains
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the same accuracy as developed in [49]. Now, we study the
fusion problem for a single sensor. The subequation of (1) can
be further given by

Db
i = C Dr

i =
⎛

⎝
C11 C12 C13
C21 C22 C23
C31 C32 C33

⎞

⎠

⎛

⎝
Dr

x,i
Dr

y,i
Dr

z,i

⎞

⎠

= Dr
x,i

⎛

⎝
C11
C21
C31

⎞

⎠+ Dr
y,i

⎛

⎝
C12
C22
C32

⎞

⎠+ Dr
z,i

⎛

⎝
C13
C23
C33

⎞

⎠

= Dr
x,i C1 + Dr

y,i C2 + Dr
z,i C3 (5)

where Cij is the element of C in the i th row and j th column
while Ci denotes the i th column of C . Namely, Db

i is the
linear combination of the three columns of the DCM.

When the DCM is represented by the quaternion q =
(q0, q1, q2, q3)

�, the columns can be decomposed such as [49]

C1 =
⎛

⎝
q2

0 + q2
1 − q2

2 − q3
3

2q1q2 − 2q0q3
2q0q2 + 2q1q3

⎞

⎠

=
⎛

⎝
q0 q1 −q2 −q3

−q3 q2 q1 −q0
q2 q3 q0 q1

⎞

⎠

⎛

⎜
⎜
⎝

q0
q1
q2
q3

⎞

⎟
⎟
⎠ = P1(q)q (6)

C2 =
⎛

⎝
2q1q2 + 2q0q3

q2
0 − q2

1 + q2
2 − q2

3−2q0q1 + 2q2q3

⎞

⎠

=
⎛

⎝
q3 q2 q1 q0
q0 −q1 q2 −q3

−q1 −q0 q3 q2

⎞

⎠

⎛

⎜
⎜
⎝

q0
q1
q2
q3

⎞

⎟
⎟
⎠ = P2(q)q (7)

C3 =
⎛

⎝
−2q0q2 + 2q1q3
2q2q3 + 2q0q1

q2
0 − q2

1 − q2
2 + q2

3

⎞

⎠

=
⎛

⎝
−q2 q3 −q0 q1
q1 q0 q3 q2
q0 −q1 −q2 q3

⎞

⎠

⎛

⎜
⎜
⎝

q0
q1
q2
q3

⎞

⎟
⎟
⎠ = P3(q)q. (8)

Then, (5) is further given by

Db
i = Dr

x,1C1 + Dr
y,i C2 + Dr

z,i C3

= [Dr
x,i P1(q) + Dr

y,i P2(q) + Dr
z,i P3(q)]q. (9)

With this equation, we extend the 1-D equation to (1). The
fusion error function of the i th sensor is defined by

f (q, i) = �Dr
x,i P1(q) + Dr

y,i P2(q) + Dr
z,i P3(q)

�
q − Db

i .

(10)

Naturally, the error function for the whole sensor combination
can be given by the augmented form

f (q, {w, v, · · · , n}) =

⎛

⎜
⎜
⎝

f (q, w)
f (q, v)

· · ·
f (q, n)

⎞

⎟
⎟
⎠ (11)

where {w, v, · · · , n} denotes the set of the indexes of valid
sensors which has been sorted in ascending order. In terms of
the weights, the corresponding error function is defined by

f (q, {w, v, · · · , n}, {aw, av , · · · , an}) =

⎛

⎜
⎜
⎜
⎝

√
aw f (q, w)√
av f (q, v)

...√
an f (q, n)

⎞

⎟
⎟
⎟
⎠

.

(12)

In this way, the original problem in (4) can be shifted to

arg min
�q�=1

�F(q)�2 (13)

where for simplicity, we use

F(q) = f (q, {w, v, · · · , n}, {aw, av , · · · , an}) (14)

to represent the error function (12). Such problem can be
solved via optimization methods. Previously, we have shown
that the error function is convex with respect to unit quaternion
normalization [50]. In Section III, we are going to introduce
a gradient-descent algorithm.

III. PROPOSED GDA METHOD

The GDA is known to be an efficient method for optimiza-
tion problems [37], [38]. It requires the derivative information
of the target function with respect to the variables to be
solved. In this case, the state of the system is chosen as
the quaternion q . The implementation of the GDA can be
expressed as

qy,k = qy,k−1 − χk∇ F(qy,k−1), χk > 0 (15)

where χk is the step size of the kth iteration. The gradient of
the suberror function f (q, i) can be computed by

∇ f (q, i) = J�
i f (q, i) (16)

where the Jacobian matrix Ji can be calculated by

Ji = ∂ f (q, i)

∂q
= Dr

x,i
∂C1

∂q
+ Dr

y,i
∂C2

∂q
+ Dr

z,i
∂C3

∂q
. (17)

The details of ∂C1/∂q, ∂C2/∂q, ∂C3/∂q are

∂C1

∂q
=
⎛

⎝
2q0 2q1 −2q2 −2q3

−2q3 2q2 2q1 −2q0
2q2 2q3 2q0 2q1

⎞

⎠ = 2 P1(q)

∂C2

∂q
=
⎛

⎝
2q3 2q2 2q1 2q0
2q0 −2q1 2q2 −2q3

−2q1 −2q0 2q3 2q2

⎞

⎠ = 2 P2(q)

∂C3

∂q
=
⎛

⎝
−2q2 2q3 −2q0 2q1
2q1 2q0 2q3 2q2
2q0 −2q1 −2q2 2q3

⎞

⎠ = 2 P3(q). (18)

Consequently Ji can be written as

Ji = 2[Dr
x,i P1(q) + Dr

y,i P2(q) + Dr
z,i P3(q)]. (19)

Then, the overall gradient of F(q) is given by

∇ F(q) = J�{w,v,··· ,n} F(q) (20)
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where

J{w,v,··· ,n} =

⎛

⎜
⎜
⎝

√
aw Jw√
av Jv

· · ·√
an Jn

⎞

⎟
⎟
⎠. (21)

Thereby, (20) can be further written as

∇ F(q) = J�{w,v,··· ,n} F(q)

= �√
aw J�

w ,
√

av J�
v , · · · ,

√
an J�

n

�

⎛

⎜
⎜
⎝

√
aw f (q, w)√
av f (q, v)

· · ·√
an f (q, n)

⎞

⎟
⎟
⎠

=
�

i∈{w,v,··· ,n}
ai J�

i f (q, i). (22)

Letting (see the Appendix)

P�
1 (q)Db

i = M1
�

Db
i

�
q

P�
2 (q)Db

i = M2
�

Db
i

�
q

P�
3 (q)Db

i = M3
�

Db
i

�
q (23)

the gradient arrives at

∇ F(q) =
�

i∈{w,v,··· ,n}
ai [1

2
J�

i (q)Ji(q)q − J�
i (q)Db

i ]

= 2
�

i∈{w,v,··· ,n}
ai

⎡

⎣

1

4
J�

i (q)Ji(q) − Dr
x,i M1(Db

i )

−Dr
y,i M2(Db

i ) − Dr
z,i M3(Db

i )

⎤

⎦q.

(24)

The operator �(q) is defined by

�(q) =
�

i∈{w,v,··· ,n}
ai

⎡

⎣
1

4
J�

i (q)Ji(q) − Dr
x,i M1(Db

i )

−Dr
y,i M2(Db

i ) − Dr
z,i M3(Db

i )

⎤

⎦.

(25)

Theorem 1: The equations
⎧
⎨⎨

⎨⎩

P�
1 (q)P1(q)q = q

P�
2 (q)P2(q)q = q

P�
3 (q)P3(q)q = q

(26)

always hold for arbitrary unit quaternion.
Proof: See the Appendix.

Lemma 1: With the derivation of Theorem 1, we have the
following equalities holding as well:

�
P�

j (q)Pk(q) + P�
k (q)Pj (q)

�
q = 04×1 (27)

where the indexes j, k = 1, 2, 3 and j �= k.
Following Lemma 1, we have

1

4
J�

i (q)Ji(q)q = q. (28)

Then, the operator is simplified from a nonlinear multiplicative
function with time complexity of O(n2) to a linear one with
the complexity of O(n)

�(q)=
�

i∈{w,v,··· ,n}
ai

�
I − Dr

x,i M1
�

Db
i

�

−Dr
y,i M2

�
Db

i

�− Dr
z,i M3

�
Db

i

�

�

. (29)

The GDA measurement update equation finally arrives at

qy,k = qy,k−1 − 2χk�(qy,k−1)qy,k−1 (30)

where subscript y denotes the observation model source.
This simplification converts the original 4 × 3n-by-3n × 1
matrix multiplication J�{w,v,··· ,n} F(q) to an additive sum of
4 × 4 matrices, which decreases the space complexity of the
algorithm.

IV. COMPLEMENTARY FILTER

A. Filter Design

A LCF can be written as the following observer [51]:
�

x̂k = �x̂k−1 + L(yk − ŷk)
ŷk = H x̂k

(31)

where k denotes the kth time epoch, x denotes the state vector,
and y denotes the measurement vector. � and H are the
transition matrix and measurement matrix, respectively. L is
the feedback gain matrix. p̂k stands for the estimation of the
p at epoch k. The feedback gain matrix L is empirically
diagonal but may degenerates to a constant for convenience
of implementation and gain determination when

L = β I (32)

where β denotes a constant scalar [38]. If the state vector is
the quaternion q in our case, the linear observer can be further
designed as

�
q̂k = �q̂k−1 + L(qy,k − q̂ y,k)
q̂ y,k = Hq̂k

(33)

where

H = I . (34)

Using the angular rate ω = (ωx , ωy , ωz)
�, this equation

generally leads to the following quaternion kinematic equation,
such that [52]

dq
dt

= 1

2
[�×]q (35)

where [�×] defines the skew symmetric matrix of angular rate
in the Hamilton space � = (0, ωx , ωy, ωz)

�

[�×] =

⎛

⎜
⎜
⎝

0 −ωx −ωy −ωz

ωx 0 ωz −ωy

ωy −ωz 0 ωx

ωz ωy −ωx 0

⎞

⎟
⎟
⎠. (36)

Hence, we approximately have [53]

� ≈ I + �t

2
[�×] (37)

where �t denotes the time span. Expanding the state process
equation, (33) can be further given by

q̂k = �q̂k−1 + L(qy,k − q̂ y,k)

⇒ (I + L)q̂k = qω,k + Lqy,k

⇒ q̂k = (I + L)−1(qω,k + Lqy,k)

⇒ q̂k = (I + L)−1qω,k + (I + L)−1 Lqy,k

⇒ q̂k = (I + L)−1qω,k + (L−1 + I)−1qy,k (38)
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where
⎧
⎨

⎩

qy,k = [I − 2χk�(q̂k−1)]q̂k−1

qω,k =
�

I + �t

2
[�×]

�

q̂k−1.
(39)

Let the complementary gain G = (L−1 + I)−1, (38) can be
given by

q̂k = (I + L)−1qω,k + (L−1 + I)−1qy,k

= (I − G)qω,k + Gqy,k

=
⎧
⎨

⎩

G[I − 2χk�(q̂k−1)]
+(I − G)

�

I + �t

2
[�×]

�

⎫
⎬

⎭
q̂k−1

=
�

I + �t

2
(I − G)[�×] − 2χk G�(q̂k−1)

�

q̂k−1. (40)

B. Robustness Ensurance

As described before, the measurement from vector obser-
vations compensates for the gyro bias. However, when highly
dynamic conditions take place, the performance of the filter
will be significantly affected. For instance, in previous works,
when exposed to large external acceleration or magnetic
distortion, the filter is influenced at the same time. In this
paper, we invent a new way for norm verification to reject
sensor outliers and, thus, make the proposed algorithm more
robust.

The Euclidean norm information can be obtained during
data acquisition of the i th sensor, such that

Normi = �Db
i � =

 
�
Db

x,i

�2 + �Db
y,i

�2 + �Db
z,i

�2
. (41)

Before the filtering process, we should have some priori
knowledge of the adopted sensor. For any sensor, when it
is operated with smooth motion under environments with
stable external field, e.g., gravity field and earth-magnetic
field, the norm of the output should be around a certain
constant. We call this constant the standard norm ST DNormi .
When the motion becomes drastic, the norm of the sensor
output will have relatively big deviation from the standard
norm. In this circumstance, the sensor is no longer trustworthy
and associated item in �(q̂k−1) should be deleted. Hence,
the weights in (24) should be revised in this case as

ãi =
�

ai , |Normi − STDNormi | < μi

0, |Normi − STDNormi | ≥ μi
(42)

and μi denotes a threshold for detecting drastic modes [15].
Finally, the whole filtering process including data acquisition
and state update is given in Algorithm 1.

C. Determination of Parameters

There are some parameters to be determined before the filter
begins. The initial quaternion qinit is the initial state of the
attitude estimator and it can be obtained using initial alignment
from strapdown sensors [28]. The complementary gain G
is commonly set as a diagonal matrix whose components
are empirically adjusted using the estimator’s response. The
determination of step length χ0 is very similar. The weights

Algorithm 1 GCF Using Strapdown Vector Observations via
GDA (GCF)
Initialize:
Time epoch k = 0
Initial state qk=0 = qinit

Complementary gain G
Step length χk = χ0
Sorted valid sensors’ indexes w, v, · · · , n
Weights aw, av , · · · , an

Standard norm list {ST DNormi |i = w, v, · · · , n}
Threshold list {μw,μv , · · · , μn}
Output: q̂k.
while no stop commands received do

1) k = k + 1
2) Input:

a) Valid normalized strapdown sensor observations:
Db

w, Db
v , · · · , Db

n
b) Normalized reference vectors: Dr

w, Dr
v , · · · , Dr

n

c) Angular rate in (rad/s): ω = �ωx , ωy, ωz
��

d) If gyroscope is not valid: G = I
3) Calculate norms Normi = ��Db

i

�
�

4) Deduce outlier rejection:

ãi =
�

ai , |Normi − ST DNormi | < μi

0, |Normi − ST DNormi | ≥ μi

5) Normalization: Db
i = Db

i�
�Db

i

�
�

6) Calculate:

!�(q̂k−1) =
�

i∈{w,v,··· ,n}
ãi

⎡

⎢
⎣

I − Dr
x,i M1(Db

i )

−Dr
y,i M2(Db

i )

−Dr
z,i M3(Db

i )

⎤

⎥
⎦

7) Perform time update:

q̂k =
⎧
⎨

⎩

I + �t

2
(I − G) [�×]

−2χk G!�(q̂k−1)

⎫
⎬

⎭
q̂k−1

8) Normalization: q̂k = q̂k�q̂k�
end while

can be determined using the initial standard deviations of
different sensors [54]. When the robust ensurance step is
applied, the standard norm list can be given according to
the regular ranges of the sensors’ norms. The thresholds are
chosen empirically in terms of the smoothness of the filter,
i.e., it decides how many “unusual” sensor observations with
unusual norms are neglected.

D. Initial Alignment

The initial alignment problem is in fact the attitude determi-
nation from strapdown vector observations in the initial stage.
The following scheme is depicted for initial alignment with
our proposed filter:
qinit,k = qinit,k−1 − �(qinit,k−1)qinit,k−1

while �qinit,k−1 − qinit,k−2� > κ (43)
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in which k = 1, 2, · · · and κ is the threshold indicating the
relative accuracy. More specifically, in steady state, we have

�(qinit)qinit = 0. (44)

Expanding it, the initial quaternion belongs to the following
eigenvalue problem:

⎛

⎜
⎝

�

i∈{w,v,··· ,n}

Dr
x,i M1

�
Db

i

�

+ Dr
y,i M2

�
Db

i

�

+ Dr
z,i M3

�
Db

i

�

⎞

⎟
⎠ qinit = qinit. (45)

The optimal solution is the eigenvector associated with the
eigenvalue closest to 1, which can be solved with our recent
method FLAE [49].

E. Further Identities and Equivalences

Remark 1: Recalling (30), we can rewrite it as

qy,k = qy,k−1 − 2χk�(qy,k−1)qy,k−1

= qy,k−1−2χk

⎧
⎨⎨

⎨⎩
I−

�

i∈{w,v,··· ,n}
ai

⎡

⎢
⎣

Dr
x,i M1

�
Db

i

�

+Dr
y,i M2

�
Db

i

�

+Dr
z,i M3

�
Db

i

�

⎤

⎥
⎦

⎫
⎨⎬

⎨⎭

× qy,k−1

= (1−2χk)qy,k−1+2χk

�

i∈{w,v,··· ,n}
ai

⎡

⎢
⎣

Dr
x,i M1

�
Db

i

�

+Dr
y,i M2

�
Db

i

�

+Dr
z,i M3

�
Db

i

�

⎤

⎥
⎦q.

(46)

If we treat the step size as a complimentary gain, then
observation model actually leads to a filtered quaternion. This
shows that the GDA is not only an optimization solver but also
a smoother as well. Such identity makes the obtained attitude
estimates smoother than that directly derived from Wahba’s
solutions.

Theorem 2: Derivative-based optimization methods includ-
ing GDA, GNA, and LMA for optimal attitude determination
from vector observations are essentially equivalent to each
other.

Proof: The GNA is a classical optimization problem, but
it may fail when the Jacobian matrix is singular. Consequently,
some other algorithms, e.g., the LMA, are designed to over-
come this drawback. The searching equation can be written as

qk = qk−1 − �J�{w,v,···n} J{w,v,···n} + λI
�−1

× J�{w,v,···n} f (qk−1, {w, v, · · · n}). (47)

Then, we have

(J�{w,v,··· ,n} J{w,v,··· ,n} + λI)qk

= (J�{w,v,··· ,n} J{w,v,··· ,n} + λI)qk−1

−J�{w,v,··· ,n} f (qk−1, {w, v, · · · , n}). (48)

Note that

(J�{w,v,··· ,n} J{w,v,··· ,n} + λI)qk−1

= (λI +
�

i∈{w,v,··· ,n}
ai J�

i Ji )qk−1

= (1 + λ)qk−1. (49)

Defining the quaternion error as

�q =
$

J�{w,v,··· ,n} J{w,v,··· ,n} + λI)(qk − qk−1

%
(50)

which is fully relevant to the original quaternion error qk −
qk−1, according to invertible priori matrix multiplication,
we finally obtain

�q ≈ (1 + λ)(qk − qk−1)

−J�{w,v,··· ,n} f (qk−1, {w, v, · · · , n}). (51)

In other words, the LMA obtains the same optimization results
in steady state with GDA. This shows that GDA is sufficient
for optimization update and LMA-based method like [40]
would only produce advance in smoothness. In addition, notice
that LMA is, in fact, an improved algorithm based on GNA.
This shows that related GNA methods like [38] are equivalent
to the proposed GDA as well. As the mentioned GNA, LMA,
and GDA are representatives of derivative-based optimization,
the equivalence connections are established.

V. HARDWARE, EXPERIMENTS, AND RESULTS

A. Sensors

Employed sensors in this section are a three-axis micro-
electromechanical system (MEMS) accelerometer, a three-axis
MEMS gyroscope, a three-axis MEMS magnetometer, and a
monocular camera. Each sensor has its sensing principle and
mathematical model. Here, we simply introduce the details of
these sensors.

A three-axis accelerometer measures the object’s specific
force. Its output in the object’s body frame can be expressed
by Ab = (ax , ay, az)

�. A three-axis gyroscope gives the
angular rate data of the object and its output is given by
ω = (ωx , ωy, ωz)

�. The magnetometer measures Earth’s
geomagnetic field and its output is Mb = (mx , my, mz)

�.
Camera has been widely used with the development of

consumer electronics. Using a camera, we can capture num-
bers of images and videos. In fact, motion can be extracted
from a recorded video stream since continuous pictures cor-
respond to changes in attitude and translation. To achieve
this task, the characteristics of pictures are necessary. There
are many feature extraction methods including scale-invariant
feature transform (SIFT) [55], gradient location-orientation
histogram [56], speeded-up robust features [57], and so on.
Extracted features from two neighboring images are in a
degree similar. This provides an approach to determine the
attitude and the translation vector with respect to the previous
acquired image. Since the correlation of the 3-D features
is easily disturbed by noises, the random sample consen-
sus (RANSAC) algorithm [58] can be used for rejecting
outliers according to probabilistic functions. Using the final
valid features’ correspondence, the relative attitude can be
obtained from (3) via the SVD method by Arun et al. [44].
If the vision field is wide enough and the motion is rel-
atively moderate, the attitude of the object can be directly
obtained using the difference between the current and initial
images.
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Fig. 1. Designed hardware platform. The platform consists of integrated
AHRS, a monocular camera, a battery, a USB debugger, and an embedded
computer.

B. Hardware Configuration

To verify the effectiveness of the proposed filter, an experi-
mental platform is designed (see Fig. 1). The system integrates
a commercial attitude and heading reference system (AHRS)
which is composed of MARG sensors. The AHRS can give
high-precision reference attitude angles along with raw sensor
outputs and has been widely verified for its high reliability
in navigation tasks such as UAV, land vehicles, and robots.
The reference attitude angles from the AHRS are chosen as
the ground truth. A camera is attached firmly to the installed
AHRS to maintain relatively identical attitude determination.
It should be noted that the design of the camera is motivated by
PX4FLOW [59] but has been modified for broader vision field
and higher image resolution. In fact, there is a microcontroller
on the camera board making the calculations faster. The navi-
gation computer is formed by an STM32F4-based board with
multiple interfaces. To achieve wireless and highly reliable
data transmission, an Xbee Pro S3B telemetry is installed on
board.

In Sections V-C–V-F, we are going to carry out several
experiments with the above-mentioned sensors in order to
evaluate the performances of accuracy, robustness, and time
consumption of the proposed algorithm compared with repre-
sentative methods as follows.

1) The first one integrates a gyroscope, an accelerometer,
and a magnetometer together which generates a typical
full-attitude AHRS. In such combination, the vector pairs
are
&

Db
1 = (ax,ay, az)

T

Db
2 = (mx,my, mz)

T

�
Dr

1 = (0, 0, 1)T

Dr
2 = (mN , 0, m D)T (52)

where ax , ay, az and mx , my, mz are the normalized
vector measurements in the body frame b from the

accelerometer and magnetometer, respeceively. mN and
m D are the reference vector components of the mag-
netometer in the North-East-Down frame which can be
referenced from the geomagnetic model according to
local geodetic location.

2) The second experiment involves a gyroscope,
an accelerometer, a magnetometer, and a monocular
camera in a hovering flight, where the vector pairs are
⎧
⎨⎨⎨⎨⎨⎨⎨⎨

⎨⎨⎨⎨⎨⎨⎨⎩

Db
1 = (ax , ay, az)

T

Db
2 = (mx , my, mz)

T

Db
3 = (px,1, py,1, pz,1)

T

...

Db
n =

�
px,n−2,

py,n−2, pz,n−2

�T

,

⎧
⎨⎨⎨⎨⎨⎨⎨⎨⎨

⎨⎨⎨⎨⎨⎨⎨⎨⎩

Dr
1 = (0, 0, 1)T

Dr
2 = (mN,0, m D)T

Dr
3 = (pr

x,1, pr
y,1, pr

z,1)
T

...

Dr
n =

�
pr

x,n−2,

pr
y,n−2, pr

z,n−2

�T

(53)

in which px,i , py,i , pz,i are the normalized coordinates
of the i th transformed feature points in the body frame.
pr

x,i , pr
y,i , pr

z,i are the normalized i th transformed feature
points reference obtained in initial image capture of the
ground.

With vector pair configurations shown earlier, we can easily
fuse them with the procedure provided in Algorithm 1.

C. Case 1: AHRS With MARG Sensors

The accelerometer and magnetometer are introduced,
adding a compensation of pitch, roll, and yaw angles from
gravity-field and magnetic-field sensing data. The MARG
sensors are calibrated for initial biases and misalignment.
To ensure good results, the operating temperature of the
sensors is stablized at 45◦C using a controlled thermal
resistance. Constant iron and soft magnetic distortion to
the magnetometer are also compensated for before all the
experiments [60]. To verify the performance of the pro-
posed generalized CF (GCF), representative methods such
as Wahba’s CF (WCF) by Marantos et al. [19], Algebraic-
QUaternion-Algorithm-based quaternion KF (AQUA q-KF)
by Valenti et al. [23], and LMA complementary observer
(LMA-CO) by Fourati et al. [40] are used for comparisons.
The parameters of different filters are tuned as follows.

1) WCF: The parameters are wa = 0.9, wm = 0.8, ca
1 =

cm
1 = 0.7, ca

2 = cm
2 = 0.3, ca

3 = 8500, cm
3 = 5500 as

described in [19].
2) AQUA q-KF: The variance matrices are

�gyro = diag(0.0013, 0.0013, 0.0013)

�acc = diag(0.01, 0.01, 0.02)

�mag = diag(0.05, 0.05, 0.05).

3) LMA-CO: The gain is set to 0.1 and the positive number
for LMA is set to λ = 0.000001.

4) Proposed GCF: The weights are set to aacc = 0.7 and
amag = 0.3 to enhance the accelerometer’s effect while
the complementary gain is set to G = 0.1I . The gain of
the proposed GCF is tuned to achieve relatively good atti-
tude estimation results in the case of such experimental
conditions.
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Fig. 2. Attitude estimation errors during a flat motion from WCF, AQUA
q-KF, LMA-CO, and the proposed GCF. Accelerometer and magnetometer
are jointly utilized.

TABLE I

RMSES OF ATTITUDE ANGLES

With the recorded data in the previous experiment, the atti-
tude estimation errors are obtained and shown in Fig. 2.
In this evaluation, the norm verification is not performed
since the motion is not drastic. As can be seen from the
figure, WCF is the worst among all filters. The estimation
accuracy of AQUA q-KF and LMA-CO is close to that
of the proposed filter. To further verify the performances,
we calculate the root-mean-squared errors (RMSEs) of various
algorithms with respect to reference angles from high precision
AHRS (see Table I).

We can see that for roll and pitch angles, the proposed GCF
reaches almost the same accuracy with LMA-CO while GCF
is the best for estimating attitude angles. This shows that the
proposed GCF is efficient for quasi-static attitude estimation.

As described before, the performance of the filter is being
tested out when drastic conditions occur. The magnetometer
can be easily disturbed by iron or magnetic objects, i.e., it
is sensitive to magnetic distortion. In the next experiment,
the designed hardware remains still on a table and is perturbed
by a moving magnet. Fig. 3 reflects the raw data from the
magnetometer along with its norm. We can see that the
magnetic distortion is very large with the norm of up to
10 Gauss. Using the acquired data, attitude estimation errors
are calculated and shown in Fig. 4. The threshold for norm
verification of magnetometer is set to μmag = 0.2. We can

Fig. 3. (a) Raw data from magnetometer. (b) Norm of the measured magnetic
field. (c) Modes of the motion.

Fig. 4. Attitude errors from various sources in the presence of magnetic
distortion.

find out that the filter without outlier rejection undergoes very
evident disturbances of yaw angles as magnetic distortion
happens. The proposed GCF is disturbed, in this case, not
only for yaw but also for roll and pitch angles. However, GCF
with outlier rejection shows interesting behavior since it is
hardly perturbed by the magnetic distortion. The third figure of
Fig. 3 shows that the filter can detect the magnetic distortion
at a high level. Although most magnetometer’s outputs are
being disturbed, there are still some trustworthy data. Using
these data, the filter maintains stable with convergent yaw
estimation. The RMSEs are shown in Table II.

D. Case 2: MARG Sensors and a Monocular Camera

In this section, a quadrotor is used to carry the designed plat-
form (see Fig. 5). The quadrotor is equipped with carbon-fiber
body and propellers and is operated under human’s control
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TABLE II

RMSES OF ATTITUDE ANGLES WHEN MAGNETIC
DISTORTION TAKES PLACE

Fig. 5. Quadrotor is used for validation of the attitude estimation system
involving MARG sensors and a monocular camera.

TABLE III

RMSES OF ATTITUDE ANGLES

via a flight controller of DJI Wookong-M. The camera is
precalibrated for its intrinsic parameters using the geometric
method proposed by Zhang [61]. The 2-D feature points are
converted to the 3-D camera frame via intrinsic parameters and
instant rotation prediction from angular rate measurements.
During a hovering flight, when the attitude and altitude are
relatively stable, raw inertial data, raw images, and reference
attitude angles are recorded with the frequency of 50 Hz.
A certain image is chosen as the reference image. The images
are processed with SIFT and RANSAC for point cloud match-
ing. An amount of at least four point pairs and 12 point pairs
at most are designed for the selecting of vector observations.
All the point pairs are ensured not to be collinear with each
other. The accelerometer and magnetometer are also adopted
for sensor fusion.

The attitude estimation results are calculated with the pro-
posed CF, an attitude observer proposed by Bras et al. [62],
the SVD method proposed by Arun et al. [44], and the
QUEST solution to Wahba’s problem [47]. The related attitude
angles are depicted in Fig. 6. As can be seen from the
figure, the proposed filter’s attitude estimation is the closest
to reference angles. While for other algorithms, the variance
is evidently larger than the proposed GCF. The RMSEs of the
attitude angles from different sources are given in Table III.
As the matter of fact, the proposed GDA method provides
us with a new approach for attitude determination from

Fig. 6. Attitude estimation results from different sources. The “SVD solution”
refers to Arun et al.’s [44] method while “nonlinear observer” is the algorithm
developed by Bras et al. [62].

Fig. 7. Attitude estimation results from vector observations. The SVD
solution proposed by Arun et al. [44], QUEST algorithm proposed by
Shuster et al. [47], and the proposed GDA are adopted for comparisons.

vector observations. Using the raw data collected, the compar-
isons on attitude angles with various algorithms are depicted
in Fig. 7. The results show that the batch attitude determination
from SVD and Wahba’s solution are much more noisy with
respect to the proposed GDA. This indicates that the proposed
GDA can properly determinate the attitude with smooth out-
puts. This can be applied to related areas for reliable attitude
determination from camera outputs.

E. Evaluation of Open Data Sets

In today’s autonomous driving equipments, there are always
sensors such inertial measurement unit (IMU) and global
navigation satellite system (GNSS) receiver to perform accu-
rate state estimation of vehicles. The KITTI data set [63],
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Fig. 8. Attitude estimation results using KITTI data set.

released by the Karlsruhe Institute of Technology and Toyota
Technological Institute at Chicago in 2012, has been widely
employed in algorithmic evaluations in representative works.
It provides the users with a large variety of sensor mea-
surements including angular rate, acceleration, velocity, posi-
tion, and ground-truth values. Here, we use the data set
2011_09_26_drive_0096_extract in the city scenes.
We use the accelerometer and GNSS velocity measurements
to form the vector observation pairs such that

�
Db

1 = (aF , aL, aU )�
Db

2 = (0,−1, 0)�,

�
Dr

1 = (0, 0,−1)�
Dr

2 = (vF , vL, vU )�

where aF , aL, aU and vF , vL, vU are the normalized mea-
surements of the acceleration and velocity, respectively, in the
Forward-Top-Left frame. The weights of the two strapdown
measurements are given equally, i.e., 0.5 and 0.5 [64]. The
complementary gain is set to G = 0.01I while the GDA
step size is χ = 0.1. The acceletometer-GNSS fusion is
enabled only when the velocity norm is over 1m/s to ensure
reliable and satisfactory heading determination. Filtering with
the angular rate, the attitude results are computed in Fig. 8. The
proposed GCF gradually converges to the ground truth over
the initial time period. In fact, the filter’s convergence largely
depends on the filter gain and GDA correction step length.
Here, the experimental result has proven the correctness and
efficiency of the proposed filter. In later works, we will try to
find how to adaptively tune the filter gain so that the attitude
estimation would be closer to the ground truth all the time.

F. Time Consumption

This section shows the execution cost regarding the time
consumption of the proposed filter. Several comparisons are
conducted to verify the performances.

1) Comparisons With Various Algorithms: Most of the
adopted algorithms in Sections V-C–V-E are evaluated for time
consumption results. Fig. 9 shows the comparisons of time
consumption between attitude algorithms for MARG fusion.

Fig. 9. Time consumption of different algorithms for MARG fusion.

Fig. 10. Time consumption of different algorithms for attitude determination
from camera outputs.

Among all the algorithms, the proposed GCF owns the least
time consumption while LMA-CO is the slowest. The WCF,
in fact, uses an SVD solution to Wahba’s problem [45] to
form a CF. LMA-CO requires the calculation of the Jacobian
and inversion thus makes it slow. AQUA q-KF is based on
KF theory which needs many matrix operations. The proposed
filter, however, is free of inversion and other operations. Hence,
in a word, the mathematical design of the proposed GCF
makes it faster than other algorithms. When we use camera to
obtain attitude determination, the amount of vector observa-
tions significantly increases. At this time, various algorithms
have quite different behaviors. The related evaluated time
consumption is given in Fig. 10.

We can see that the QUEST algorithm is the fastest
among all algorithms. However, QUEST, as a batch attitude
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Fig. 11. Time consumption of the proposed filter varies with the amount
of the vector observations. The legend denotes the index of the repeated
simulation.

TABLE IV

MEAN AND STANDARD DEVIATION OF TIME CONSUMPTION OF

VARIOUS ALGORITHMS FOR EACH VECTOR OBSERVATION.
EACH ALGORITHM IS EXECUTED FOR 20× TO

OBTAIN THE AVERAGE VALUES

determination algorithm, can only produce unfiltered results
from vector observations. In real applications, we need smooth
state estimates to ensure the operating quality of the system.
It should be noted that the proposed GDA, as described
before, can be seen as an attitude smoother (see Fig. 7). The
results show that the proposed GDA is the second fastest
among all the algorithms. This proves that the proposed
GDA can determinate attitude with relatively fast speed and
much more smooth outputs. The mean time consumption and
related standard deviation of different algorithms are presented
in Table IV.

2) Time Complexity Test: Numbers of simulations are also
carried out to show the relationship between the amount of
vector observations and time consumption. We repeated one
simulation with various amount of vector observations for
15 times and the details are gathered and shown in Fig. 11.
Multiple simulations show that the relationship is linear
between the amount of vector observations and time con-
sumption. Hence, this algorithm owns a time complexity
of O(n). The reason is that the proposed filter simplifies
the computation of the Jacobian matrix and, thus, converts
the sophisticated matrix multiplication to a sum of matrices.

The low time complexity of the proposed filter makes it easy
to be applied on platforms with low configurations. The saved
time can be reserved for fault detection, failsafe, reliability
enhancement, and so on.

VI. CONCLUSION

This paper deals with the generalized multisensor fusion
problem. Based on some previous works, the problem is
transformed into minimizing a new error function. The min-
imization problem is then solved using the GDA. Different
from existing works, we obtain some meaningful findings of
the sensor fusion that significantly simplifies the computation
of the Jacobian matrix. The original huge matrix multiplication
is then converted to a sum of several matrices. The proposed
approach, in fact, gives a new perspective for attitude determi-
nation from vector observations. A CF is designed further to
fuse the angular rate and measurement quaternion from vector
observations together. The filter is then named as the GCF.
Moreover, we study some mathematical properties of the
proposed GCF. Results show that for quaternion-based attitude
estimation from angular rate information and strapdown vector
observations, the proposed GDA is equivalent to LMA.

Experiments and simulations are designed and carried out to
verify the correctness and effectiveness of the proposed filter.
Throughout the experiments using MARG sensors, the results
prove that the proposed filter can produce accurate attitude
estimation in both normal and harsh cases. The algorithm is
then extended to attitude estimation using inertial information
and visual data from a monocular camera. The comparisons
show that the filter can also achieve a satisfactory attitude
accuracy with respect to ground truth and other representative
methods. Execution time consumption from various sources
is also investigated which proves that the proposed filter is
computation efficient and owns a time complexity of O(n)
with respect to the number of vector observations that makes
it easier to be implemented on low-configuration platforms.

We believe that the proposed filter can potentially benefit
related navigational applications. Related codes have been
upload on https://github.com/zarathustr/GCF. Also, we think
that the determination of an adaptive gain to the filter for better
dynamic performance will be another task for us in the future.

APPENDIX

MANDATORY PROOFS

A. Linear Matrix Algebra
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B. Quaternion Identities

One can easily write out
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With the same technique, we obtain
⎧
⎨⎨
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Then, with expansions, we have

U1(q)q = U2(q)q = U3(q)q = 04×1 (58)

which finishes the proof of Theorem 1.
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