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Abstract— Challenges persist in nonholonomic robot naviga-
tion in dynamic environments. This paper presents a framework
for such navigation based on the model of generalized velocity
obstacles (GVO). The idea of velocity obstacles has been
well studied and developed for obstacle avoidance since being
proposed in 1998. Though it has been proved to be successful,
most studies have assumed equations of motion to be linear,
which limits their application to holonomic robots. In addition,
more attention has been paid to the immediate reaction of
robots, while advance planning has been neglected. By applying
the GVO model to differential drive robots and by combining it
with RRT*, we reduce the uncertainty of the robot trajectory,
thus further reducing the range of concern, and save both
computation time and running time. By introducing uncertainty
for the dynamic obstacles with a Kalman filter, we dilute the
risk of considering the obstacles as uniformly moving along
a straight line and guarantee the safety. Special concern is
given to path generation, including curvature check, making
the generated path feasible for nonholonomic robots. We
experimentally demonstrate the feasibility of the framework.

I. INTRODUCTION

As robots are increasingly involved in daily life, it is

common to see robots working around humans. They are as-

signed to a variety of tasks, from serving as tourist guides, or

patrolmen to driving as autonomous cars. In most scenarios,

these robots are required to navigate to target destinations

with the presence of moving humans or other objects. To

ensure the safety of both humans and robots and also

enable robots to work efficiently, suitable control strategies

applicable to the navigation tasks need to be developed.

Robots are required to move towards target in a short time

and avoid either static or dynamic obstacles observed by

their sensors, which involves efficient path planning and

valid obstacle avoidance. Though these two topics have

been well researched, currently, there is no ideal solution

to handling the navigation problem within cluttered dynamic

environments. The typical method is treating the environment

as static environment and refreshing the planning when the

planned path becomes infeasible. It is simple, but inefficient

as it relies on the time-consuming planning process. Naviga-

tion with the participants of pedestrians are broadly studied.

However, dynamic environments that have been studied most

are limited to simple environments like corridors and plazas.

These environments are less cluttered and the static obstacles

are less considered and even neglected.
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Fig. 1. Photograph of the turtlebot while navigating in a cluttered dynamic
environment using the proposed scheme.

The difficulties of this kind of navigation problem are

attributable to the uncertainty in the environment, particularly

in the dynamic objects, and the complexity of the environ-

ment itself. As shown in Fig.1, the motion of the pedestrian

is unknown and sensor noise exists. The environment is

cluttered and no straight path is available from the start point

to the goal. To handle the real-time nonholonomic robot

navigation in such a dynamic cluttered environment, we

propose a scheme which combines the quick path planning

by RRT* and the instant collision avoidance by introducing

the GVO model. The path planner reduces the collision

risk along robot trajectory as the planned path bypasses the

static obstacles, thus further reducing the range of concern

for obstacle avoidance, saving both computation time and

running time. Besides, given a reference path, the navigation

problem can be solved efficiently in a more cluttered complex

environment. Furthermore, by introducing uncertainty for the

dynamic obstacles with a Kalman filter, we reduce the risk

of considering obstacles as moving along a straight line with

a consistent speed.

The rest of the paper is organized as follows. Related

work is covered in Section II. In Section III, we firstly

present the framework of the navigation system. Then each

part of the system is introduced in detail, including the path

generator, path follower and obstacle avoidance. In Section

IV, the experimental platforms are introduced and the results

analyzed and evaluated. Finally, conclusions are drawn in

Section V.
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II. RELATED WORKS

Existing works that target solving the complex obstacle

avoidance problem can be roughly classified into two cate-

gories, namely model-based and learning based approaches.

As the study of deep learning continues to heat up, learning

based approaches [1],[2] have been put forward. The key idea

is to mimic or learn human decision policies toward solving

the complex navigation problem. The training process is

time- and data-consuming and the performance of these

methods may degrade a lot if the robot is put into a new

environment. Different from the learning based methods,

model-based methods rely on reasonable geometric rules or

potential field are considered more computationally efficient.

In 1998, one of the most representative works,[4], proposed

the velocity obstacles (VO) model, which utilizes collision

cones to define the region of velocity that will cause a

collision at some time in the future. Keeping the velocity

selection outside the cone ensures safe navigation. Since

1998, variations of VO have been proposed to solve problems

encountered in different scenarios. As the VO model holds

the assumption that dynamic obstacles move passively and

will not react to a robot, which is not true for multiple agents,

the reciprocal velocity obstacles(RVO)[5] method modifies

the position of the collision cone by assuming every robot

shares half of the responsibility of collision avoidance. And

optimal reciprocal collision avoidance(ORCA)[6] defines the

set of safe velocities to be a half plane with respect to

VO and guaranteed local-free motion of a large number

of robots. As the above methods are limited to holonomic

robots, various approaches have been proposed to extend

them to differential-drive[7],[8] and car-like robots[9]. To be

more general, Wilkie et.al.[10] defined the velocity cone as

generalized velocity obstacles (GVO) and made it general

and applicable for robots with different kinematic constraints.

For the methods mentioned above, the precise status, in-

cluding the location and velocity of the moving obstacles is

required and only the instant velocity is considered, which

make these methods lack of anti-interference capability for

real environment applications. Another proverbial approach

for obstacle avoidance is the social force model [3], which

mainly focuses on the interactions among various agents and

defines the attractive force and repulsive force for navigating

toward the goal and avoiding the obstacles, respectively.

However, it requires the knowledge of final destination of

every agent.

Generally, path planning aims at finding a curve starting

from a start node, to the target. And we are dealing with

a local path planning problem with a near target and are

required to give a path with high resolution. Various methods

have been proposed, and can be divided into complete and

probabilistically complete algorithms. Of probabilistically

complete approaches, i.e., sampling based methods, the

most representative methods are rapidly-exploring random

trees(RRT)[12] and probabilistic road maps(PRM)[13]. One

of the most famous variations of the RRT is RRT*[14],

which adds an extra ”rewiring” step to the RRT tree and

converges towards an optimal solution. Other methods that

guarantee optimality are based on graph search and are

called complete algorithms.A*[15], which combines best-

first search and Dijkstra’s algorithm[16] to find the optimal

solution by searching among all possible paths. Dynamic A*

search(D*)[17] focuses on the updates of cost to minimize

state expansions and further reduces computational costs.

Other methods, including some local planning algorithms,

are represented by the dynamic window approach(DWA)[18]

and vertical field histogram(VFH)[19]. The DWA generates

acceptable velocity by sampling and evaluates traces by

heading angle error. As it treats all obstacles equally and

shows no concern for the motion state of obstacles, it is

limited to applications in a static environment.

III. SYSTEM

A. Framework

The whole system consists of robot trajectory generation,

dynamic object status estimation, obstacle avoidance and

path-following control. At the beginning, objects defined

by laser points are clustered and classified into static and

dynamic obstacles. Only static points are considered for

path generation. Then a collision free and smooth path is

generated by RRT* and spline interpolation. After that, laser

point clustering of humans is registered and the positions

are treated as the observation input of a Kalman filter.

The Kalman filter is updated every cycle and both moving

speed and position can be directly obtained. If the obstacles

are far away from the robot, a path-following controller

will take control and the robot will follow the generated

path. Otherwise, obstacle avoidance will dominate and the

controller will only offer a reference action. All the obstacles

are treated as GVOs. By estimating the status of the robot

and obstacles after taking a certain action within a certain

time, a set of actions that satisfy the collision condition can

be acquired. The final action is decided by the similarity to

the reference velocity. The framework is shown in Fig.2.

Fig. 2. Framework of the system.

B. Path generator

The path generator is mainly based on the RRT* algorithm

with extra constraints added to obtain satisfactory solutions.

As shown in Algorithm 1, to begin with, static obstacles

are extracted by DBSCAN clustering because only static

obstacles are considered for path generation. Different from
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RRT*, informed RRT* [20] induces heuristic-biased sam-

pling, which increases the sampling probability inside the

heuristic sampling domain while reducing the probability

outside. For informed RRT*, the heuristic domain is an

ellipse, with its shape defined by the distance between the

start point and goal as well as the given minimal distance

cost. Here, the ellipse is defined in the same way, but all the

samplings are done inside the ellipse as we get the best cost

from the standard RRT* algorithm and ascertain that one

solution can be obtained inside it. The sampling density of

the RRT* is set to be much smaller than the latter. Besides

the sampling method, a collision check and curvature check

are introduced to better satisfy the motion conditions of

nonholonomic robots. After finding the path to goal, spline

interpolation is conducted to get a smooth path. Examples

of generated paths are shown in Fig.3

Algorithm 1 Path generator

Extract static Obs and dynamic obstacles Obd.

Generate path by RRT* with low sampling density and

take the distance cost as the minimal cost obtained cbest.
Assume the robot position as Probot = (Prx , Pry ), goal

position as Pgoal = (Pgx , Pgy ),and the ideal minimal

distance as cmin =
√
(Pgx − Prx)

2 + (Pgy − Pry )
2.

for numnodes <= area ∗ densitynodes do
Generate potential node A by sampling inside an ellipse:[
x
y

]
=

[
Pgx−Prx

cmin
−Pgy−Pry

cmin
Pgy−Pry

cmin

Pgx−Prx

cmin

][
cbest
2 0

0

√
c2best−c2min

2

]

·
[
x0

y0

]
+

[
Pgx+Prx

2
Pgy+Pry

2

]
, where x2

0 + y20 = 1

Adjust A to ensure that A is close to at least one node

in the accepted node set.

Get the parent node of A, marked as node B and the

parent node of B, marked as node C.

if min(dis(AB,Obs) > disth and |angle(AB) −
angle(BC)| < angleth then

Add new node A.

end if
Do curvature check and collision check during rewiring.

end for
Track back from the closest node to goal to start point

Generate trace points by spline interpolation

Fig. 3. Trace examples generated by informed-RRT* and spline interpola-
tion. To generate the tree, the sampling density is set to be 8 nodes/m2 and
the largest distance between two nodes is 0.6m. And there are no iterations
for time consideration.

C. Path follower

Fig. 4. Differential drive robot model and error definition for closed loop
control.e1, e2 and e3 are defined in the real robot frame, and poses of robots
are defined in the world frame.
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⎣ẋẏ
θ̇

⎤
⎦ =

⎡
⎣cosθ 0
sinθ 0
0 1

⎤
⎦ ·

[
v
ω

]
(1)

⎡
⎣e1e2
e3

⎤
⎦ =

⎡
⎣−cosθ −sinθ 0

sinθ −cosθ 0
0 0 −1

⎤
⎦ ·

⎡
⎣x− xr

y − yr
θ − θr

⎤
⎦ (2)

[
ue1

ue2

]
=

[−k1 0 0
0 −sign(ur1)k2 −k3

]
·
⎡
⎣e1e2
e3

⎤
⎦ (3)

[
v
ω

]
=

[
cose3 0
0 1

]
·
[
ur1

ur2

]
−
[
ue1

ue2

]
(4)

k1 = k3 = 2ξ
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After path generation, trace is passed to a path follower.

We use the closed loop controller proposed by Klancar et
al.[21] to make the robot move along a reference path. The

robot architecture can be seen in Fig.4. For a differential

drive robot, the motion equations are described by Eq.1,

where v and ω are the forward and angular velocities, and

θ is the forward direction of the robot in the world frame.

The error between the real pose (x, y, z) and the reference

pose (xr, yr, θr) in the frame of the real robot can be

calculated by Eq.2. Multiplying the error by gain matrix K,

we can get the feedback (ue1 , ue2) (shown in Eq.3). The

final output actions(u1, u2) can be obtained from reference

actions (ur1 , ur2) and (ue1 , ue2). The K matrix depends on

the reference actions. And ξ and g have a large influence on

the result. In experiments, we found that with large g values,

the robot will move in a zigzag, as the controller becomes too

sensitive to the error. In this case, the error is defined as the

closest distance from the current robot position to the spline,

and the reference actions are given by looking several steps

forward. If all the obstacles are out of collision range, this

controller will take control and send the velocity command

(v, ω). Otherwise, the output of the controller will serve as

reference actions and be passed to the obstacle avoidance.

D. Obstacle avoidance
For obstacles avoidance, we learn from the GVO model

and apply it to the differential drive robot. The GVO model
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was proposed to solve the real-time navigation problem in

dynamic environments with car-like robots. The key idea is

to find the acceptable actions that will avoid collision in the

near future. Different from most of the VO models, the GVO

model has no requirement of linear motion of the robots,

which makes it convenient to extend to nonholonomic robots.

Although the paper only focuses on dynamic obstacles, in

theory, it is also applicable to static environment, which

make it usable for applications in complex environments. As

shown in Algorithm 3, firstly, the laser data are divided into

dynamic and static obstacles. Provided with a reference path,

the range of static obstacles considered can be suppressed.

After getting the human pose as an observation, the Kalman

filter is updated and then both the position and velocity of

humans [px, py, vx, vy]
T can be obtained. Given a sampling

space, which is mainly confined by the maximum forward

velocity and angular velocity of the robot, one potential

action is generated. Then robot poses at time t can be derived,

as shown in Eq.7 and Eq.8. Different obstacles are handled

differently. The relative position of static obstacles Pobs(t) is

certain if the error of the robot’s position can be omitted and

time threshold tsth is small (will not induce a large odom

error). So the minimal distance between the robot and obsta-

cles given t ∈ [0, tsth ] can be derived easily. As there exist

both pose uncertainty and velocity uncertainty, the motion of

humans cannot be reduced to a simple linear motion model.

In this paper, human pose at time t, Phuman(t), is treated

as a sum of two Gaussians and is also normally distributed

with a distribution of N(μp + μvt,Σp + t2Σv). This is

straightforward as a long time will increase the uncertainty

of the predicted human pose. To ensure the safety of humans,

we set a threshold and when the probability that the robot

will collide with a human goes high enough, the time is

recorded and the action is rejected. After sampling n times,

we get two sets. If the accepted actions set is not empty, the

difference between desired actions and proposed actions will

be the rule of choosing the final action. The most common

one is the 2-norm, which was also used in [10]. If there is

no good choice, instead of stopping and waiting for the next

loop, the corresponding actions with maximum time will be

chosen, and when the time to collide is less than tcth , the

robot will stop. All the thresholds in this model depend on

the kinematic constraints of the robot:

x(t) = v
ω sin(θ + ωt)− v

ω sin(θ) (7)

y(t) = − v
ω cos(θ + ωt) + v

ω cos(θ). (8)

IV. EXPERIMENTAL RESULTS

A. Platform

To show the performance of the planner, navigation in both

a virtual and a real environment was tested. The virtual envi-

ronment was built in V-rep[22]. Walls and blocks were placed

as static obstacles and a walking man was introduced as a

dynamic obstacle. The man walked towards a random target

with simple path planning and could not avoid obstacles in a

Algorithm 2 GVO model

Get desired actions u∗ from path follower

Classify laser points into Obs and Obd
Update Kalman filter and get estimated human pose

(px, py) and velocity (vx, vy)
Get static obstacles {Obs1 , Obs2 ...} within distance dissta
for i = 0 to n do
free = True
Sample one action u = (w, v) from action space

Get estimated robot pos Probot(t) at t

for all dynamic obstacles Obd and static obstacles Obs
do

Let Ds(t) be the distance between Obs and robot at

time t, t < tsth
tmin = min(argmin(Ds(t)), tmin)
if Ds(tmin) < radiusrobot then

free = False
end if
Let fd(t) be the normalized PDF value of human

position distribution at Probot(t), t < tdth

while t < tdth
do

if fd(t) > pth then
free = False
tmin = min(tmin, t)
break

end if
t = t+ δt

end while
end for
if free then

Add (w, v) to accept actions set A

else
Add (w, v) to reject actions set R

end if
end for
if A �= ∅ then
u = argmin(f(u− u∗))

else
u = argmax(tmin(u)), u ∈ R

if tmin < tcth then
u = 0

end if
end if
Return u

timely way. In both environments, we used Turtlebot as the

mobile ground platform, equipped with a SICK TiM5611 2D

laser range finder(LRF). The experimental configuration is

shown in Table I. To capture the pose of the human, we

tested the whole system inside a motion capture system,

OptiTrack2.The test platform and scene are shown in Fig.5(a)

and Fig.5(b).

1https://www.sick.com/de/en/detection-and-ranging-solutions/2d-lidar-
sensors/tim5xx/tim561-2050101/p/p369446

2http://optitrack.com/products/prime-41/
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TABLE I

TEST CONFIGURATION

Components Parameters Comments
Turtlebot vmax = 1.6m/s, ωmax = πrad/s Kobuki

SICK 2D LRF FOV=270◦, angle resolution= 0.33◦, can be used
range=[0.05m,10m], scanfeq=15HZ outdoors

Computer Intel NUC Kit NUC5i7RYH -
Lithium battery 12 V and 19V output Power supply

(a) platform (b) test scene

Fig. 5. (a) Test platform and (b) test environment. To use the motion capture
system, ball reflectors were attached to the platform and walking man for
localization. (b) shows the test scene for dynamic obstacle avoidance.

B. Evaluation

To measure the performance of the navigation system,

we compared the performance of the proposed method with

the GVO model without path planning in terms of average

navigation time, success rate, etc. We aimed to evaluate the

effect of including a path generator, as in most cases, the

VO model has no plan for velocity control with its reference

velocity simply set towards the target. Here, the compared

GVO model was combined with state estimation of moving

obstacles and the same controller for velocity control. Four

different scenes were evaluated for the virtual environment.

For better visualization, both the goal of the robot and human

were shown as columns. And to test the robustness of the

scheme, extreme cases where the human would definitely

collide with the robot if no strategy was adopted were tested,

including a scene where both the start point and goal of

the human and robot were in the same line, and the cross

scenario. The complexity of the task was increased from

scene1 to scene4(shown in Fig.6). We ran the testing 10

times for each scene with the two different methods. We

also tested the algorithm in a real environment and recorded

the robot trace for analysis.

C. Results

A successful demonstration of the robot navigation

through the complex environment is shown in Fig.7(a) and

Fig.7(b). Due to the limit of optimization time, the planned

path(red) of the robot is suboptimal. The robot follows the

path before the awareness of the possible collision caused

by the human coming right ahead. And it goes to the right

side to avoid the human and return to the original path after

the potential collision being resolved. The human trace is

represented by a series of Gaussian distributions provided

by the Kalman filter. The test results in the simulation envi-

ronment are shown in Fig.8(a) and Fig.8(b). The bar graph

in Fig.8(a) shows that both GVO and GVO combined with

(a) test scene1 (b) test scene2

(c) test scene3 (d) test scene4

Fig. 6. Test secenes in virtual environment.

(a) 2D-trace (b) 3D-trace

Fig. 7. Generated and real trace of a robot during navigation. In Fig.7(a),
the red line is the spline, and the magenta and green lines are the trajectories
of the robot and a human respectively. Fig.7(b) shows the robot trace and
human trace with time steps; the red circles are error ellipses at one σ

(a) Success rate

(b) Average time

Fig. 8. (a)Success rate(b)Average time spent in different scenes for GVO
only and GVO+RRT*.

RRT* finished the task successfully in a dynamic environ-

ment given state estimation of the human by a Kalman filter.

Increasing the complexity of the static scene will greatly
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Fig. 9. Robot navigation test in real environment. Robot trajectory1 and Robot trajectory2 stand for robot navigation based on GVO + RRT* and GVO
alone, respectively. Human trajectory1 and human trajectory2 represent the human activity during the navigation, respectively.

influence the performance of the GVO model. As is shown in

Fig.8(b), both finishing time and time fluctuation increased.

Though RRT* took some time to generate a path, which

made the time a little bit longer in simple environments, it

was stable when increasing the number of obstacles. Since

the human in the simulation environment could not react to a

potential collision immediately, the results are considered to

have shown the worst situation. We also test the strategy in

a real environment. As shown in Fig.9, the trajectories were

smooth in a simple dynamic environment. When more static

obstacles appeared, GVO+RRT* kept a smooth trajectory,

while the robot controlled by GVO rotated and changed

direction to avoid collision.

V. CONCLUSIONS

In this paper, we have demonstrated a scheme for real-time

nonholonomic robot navigation in dynamic environments,

which combines RRT* and GVO to deal with path planning

and obstacle avoidance. We also introduce a Kalman filter to

model human motion. The proposed navigation scheme was

proved to be more robust to complicated environments than

GVO alone.

Future work includes integrating human 3D pose estima-

tion from RGB images or 3D lidar. As it is applicable to

car-like robots, further extending our scheme to autonomous

driving is promising and would have great significance.
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