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• The proposed motion removal approach benefits RGB-D SLAM in dynamic environments.

a r t i c l e i n f o

Article history:
Available online 21 November 2016

Keywords:
RGB-D SLAM
Dynamic environments
RANSAC
Motion removal

a b s t r a c t

Visual Simultaneous Localization and Mapping (SLAM) based on RGB-D data has developed as a funda-
mental approach for robot perception over the past decades. There is an extensive literature regarding
RGB-D SLAM and its applications. However, most of existing RGB-D SLAM methods assume that the
traversed environments are static during the SLAM process. This is because moving objects in dynamic
environments can severely degrade the SLAM performance. The static world assumption limits the
applications of RGB-D SLAM in dynamic environments. In order to address this problem, we proposed
a novel RGB-D data-based motion removal approach and integrated it into the front end of RGB-D SLAM.
The motion removal approach acted as a pre-processing stage to filter out data that were associated
withmoving objects. We conducted experiments using a public RGB-D dataset. The results demonstrated
that the proposed motion removal approach was able to effectively improve RGB-D SLAM in various
challenging dynamic environments.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Simultaneous Localization and Mapping (SLAM) has developed
as a fundamental capability for robots over the past decades [1].
Lots of impressive SLAM systems have been developed and open-
sourced [2]. However, almost all the theories and implementa-
tions of current SLAM approaches are built on the static world
assumption. It requires that objects in the traversed environments
must remain still during the SLAM process [3]. However, this
assumption is usually not true in realworld environments, because
moving objects are ubiquitous and unavoidable inmost cases. They
can corrupt the odometry estimation and cause spurious objects
recorded on the resulting map, which makes the map useless
for further applications. A solution to solve this problem is to
equip robots with sophisticated proprioceptive sensors [4], such
as precise inertial systems. Robot poses can be reliably estimated
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by fusing information from the sensors [5]. Moving objects can be
inferred by ego-motion compensation with the reliable odometry
estimation. However, precise proprioceptive sensors are usually
not cost effective. In most visual applications, cameras are usually
the only available sensors. Therefore, the key challenge to address
the RGB-D data-based Visual SLAM problem in dynamic environ-
ments is how to eliminate the negative effects caused by moving
objects merely using visual sensors.

The advent of RGB-D cameras provides a low-cost solution to
sense the 3-D world in point clouds [6]. RGB-D cameras, such as
Kinect [7], have become standard equipments for robots today.
Many effective 3-D SLAM algorithms have been proposed using
RGB-D cameras [8–12]. Impressive SLAM results in static envi-
ronments were reported. In most RGB-D SLAM systems, moving
objects are usually implicitly tackled to increase the robustness of
the systems. For instance, SLAMmethods that use Iterative Closest
Point (ICP) [13] algorithm for point-cloud registration normally
adopt a two-step framework like themechanism in [14]. They inte-
grate thewidely used robust estimator Random Sample Consensus
(RANSAC) [15] algorithm into estimation pipeline. In the first step,
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RANSAC is used to roughly estimate the 3-D transformation by
finding an optimum consensus model. In the second step, ICP is
employed to refine the transformation with the initial guess from
the first step. This framework increases the robustness of RGB-D
SLAM. However, RGB-D cameras normally have a narrow Field-
of-View (FOV) compared with laser range finders. When moving
objects are not trivial in FOV, just rejecting outliers using the above
mentioned framework is not sufficient to eliminate the negative
effects caused by moving objects. Note that the outliers here mean
the feature associations that are not consistent with the estimated
transformation. In dynamic environments, the outliers normally
come from moving objects. The wrongly detected inliers are of-
ten sufficient to corrupt the pose estimation. In addition, moving
objects are prone to be recorded in resulting maps. When robots
return to the place where the moving objects have disappeared,
the loop detection can be severely confused.

To address this problem,we proposed to densely segmentmov-
ing objects from image frames.We define the densemoving-object
segmentation as motion removal in this paper. A novel motion
removal approach based on RGB-D data was proposed. To validate
our idea, we incorporated the proposed motion removal approach
into the front end of an RGB-D SLAM system. The proposed ap-
proach acted as a pre-processing stage to filter out data that were
associated with moving objects. We tested our approach using
a public RGB-D dataset. The experimental results demonstrated
that our approach was able to improve the RGB-D SLAM perfor-
mance effectively. Note that part of this paper had been published
in [16]. This paper is an extended version to solve the RGB-D SLAM
problem in dynamic environments. The main contributions of this
paper are summarized as follows:

• A novel motion removal approach was proposed. The ap-
proach was on-line and required only an RGB-D camera as
the sensor. No human intervention at any stagewas needed.

• Vector quantized depth images were adopted for motion
segmentation, by which the benefits were demonstrated
empirically.

• Experiments were performed using a public RGB-D dataset.
The results demonstrated the effectiveness of our approach
to improve RGB-D SLAM in various dynamic environments.

The remainder of this paper is organized as follows. Section 2
presents a review for related work. Section 3 explains why we
use motion removal to improve the RGB-D SLAM performance.
Section 4 presents the details of our proposed approach. Section 5
discusses the experimental results. Conclusions and future works
are drawn in the last section.

2. Related work

We use motion removal to solve the RGB-D SLAM problem in
dynamic environments. However, motion removal for images cap-
tured by moving cameras is an ill-posed problem in computer vi-
sion. Classical motion segmentation methods, such as background
subtraction [17], become virtually useless when camera is not
static. This is because both the foreground and the background are
moving in images at the same time. Over the past years, lots of mo-
tion removal methods have been proposed. The fundamental chal-
lenge of motion removal is to disambiguate the motions induced
by camera ego-motion and the motions caused by independently
moving objects. It is hard to address this challenge without prior
cues or assumptions. This section reviews selectedmotion removal
methods which have been reported in recent literature.

We generally divide the motion removal approaches into two
categories: the off-line approaches and the on-line approaches.
Off-line refers to start processing after receiving the whole data.

They cannot produce motion removal results immediately in re-
sponse to each input image. Decisions must be made with knowl-
edge of the future information [18]. Lots of early motion removal
approaches adopt the off-line strategy. In [19], the method esti-
mated a set of trajectories by tracking sparse salient points across
video frames. The approach discriminated background trajectories
and foreground trajectories using RANSAC algorithmwith geomet-
ric constraints. Background and foreground appearance models
were builtwith classified sparse points. Pixel-wise labelingwas ob-
tained using the built models. In [20], dense pixel correspondences
were found using dense optical flow. Pixel-wise dense trajectories
across a number of frames were computed using particle advec-
tion. The authors proposed amulti-frame epipolar constraint.With
RANSAC algorithm, the trajectories which violated the constraint
were determined as outliers. Moving objects were segmented ac-
cording to the classified dense trajectories. Liu et al. proposed a
learning-based motion removal approach [21]. Pixel-wise motion
likelihoods were obtained by subtracting optical flow values with
global ego-motion estimated by image homography. They selected
a set of key frames through thewhole video. The selection criterion
is based on whether a frame can cover at least a part of moving
objects. Foreground appearance model was learned from motion
cues in the key frames. They employed theGaussianMixtureModel
(GMM) technique to build the foreground model. The foreground
was segmented with the built GMM model. Zamalieva et al. es-
timated a temporal fundamental matrix from a number of con-
secutive frames [22]. Different from traditional fundamental ma-
trix estimation method, they estimated the temporal fundamental
matrix using tracklets calculated from dense optical flow. Moving
objects can be determined by howwell the corresponding tracklet
fits the estimated scene geometry.

In contrast to off-line methods, on-line methods do not require
future information. In RGB-D SLAM, moving objects are supposed
to be removed in the SLAM front end before data associations. On-
linemethods can segmentmoving objects simultaneouslywith the
SLAM process, which prevents moving objects hindering the data
associations in SLAM. Thus, on-line methods are more suitable for
SLAM applications. In [23], an on-line motion removal approach
for Visual SLAM in dynamic environments was proposed. It seg-
mented moving objects using multiple geometric constraints and
dense optical flow algorithm. Motion removal was integrated into
a Visual SLAM system. The reported results demonstrated that the
SLAM performance was effectively improved. In [24], motion cues
were obtained in the first frame by examining the dense optical
flow with the epiploar constraint. The initial segmentation was
propagated as a seed for following frames. The authors divided
an image into a number of equal-size blocks. Background and
foreground appearances were learned block-wisely in kernel den-
sity models with the propagated motion segmentation result. The
motion segmentation and the model propagation were repeated
iteratively. In [25], motion removal was realized real-timely on
resource limited devices. The authors adopted the block technique.
Each block was described using dual-mode Single Gaussian Model
(SGM) with age. One SGM severed as an apparent model and the
other one severed as a candidate model. The dual-mode SGM was
different from the GMM with two models. The dual-model SGM
provided two containers to receive data, which avoids foreground
points contaminating the real background model. The two SGM
modelswere swappedwhen the age of onemodelwas greater than
that of the othermodel. Blocksweremixedwith propagation using
ego-motion computed from homography. In [26], an RGB-D data-
based motion removal approach was proposed. A large number
of segmentation cues were combined to construct a Conditional
RandomField (CRF)model. The segmentation cues included optical
flow, visual appearance, color and depth discontinuities, etc. The
training process of the method was to determine the weights for
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each cue in the energy function. Themethod assumed that an initial
hand-labeled segmentation was given at the first iteration. The
CRF segmentation result of the current frame served as the motion
likelihood for the CRF model in the next frame. Moving objects
were incrementally segmented from each frame using the prop-
agation scheme. In [27], motion cues were obtained by examining
super-pixel changes in consecutive frames. The authors observed
that super-pixel changes usually happen on moving objects. They
propagated super-pixels from current frame back to the last frame.
The super-pixel with the largest overlap in the last frame was
employed to calculate the Jaccard distance with the propagated
super-pixel. An adaptive threshold was employed to determine
whether the propagated super-pixel belongs to moving objects
by the calculated Jaccard distance. Foreground and background
appearance models were built using Mixture of Gaussians (MOG)
technique with the classified super-pixels. Motion segmentation
was further optimized using a graph-cut framework. The mostly
relevantwork to ours presented here is [28]. The authors improved
the motion removal method developed in [29], and integrated
it into an RGB-D SLAM system. They performed experiments on
the public TUM RGB-D dataset [30]. The results demonstrated the
effectiveness to improve the RGB-D SLAM performance.

3. Problem statement

In this section, we briefly introduce the graph SLAM [31] and
explain why we use motion removal to improve the SLAM per-
formance. We illustrate the problem using the pose graph frame-
work, because most of the current RGB-D SLAM systems adopt
this framework. In addition, it is natural to express our idea in
the structure of pose graph. Fig. 1 describes the pose graph in a
dynamic environment. The edges linking robot poses constrain the
motion model, while the edges linking robot poses and landmarks
constrain themeasurementmodel. The graph SLAMcanbe reduced
to pose graph SLAM by removing landmarks and introducing new
edges between relevant pairs of robot poses. The newly introduced
edges between the pairs of robot poses constraint the nodes equiv-
alently to the edges of the previous pose graph.

In RGB-D SLAM, the constraints between robot poses encode
the transformations between key frames. Loop detection is to find
the pairs of key frames which are likely to be captured at a same
location. It adds an edge between the associated key frames and
computes the transformation between them. The pose graph SLAM
can be solved by minimizing a number of non-linear errors:

EPoseGraph(χ ) = χ T
0 Λ0χ0

+

∑
i∈P

[ϕi−1
i − H(χi−1, χi)]

T
Γ i−1
i [ϕi−1

i − H(χi−1, χi)]

+

∑
{m,n}∈P

[ζ n
m − H(χm, χn)]TΞ n

m[ζ n
m − H(χm, χn)]

(1)

where χ represents the robot poses that we want to find, P
represents the node set of the graph, ϕ and ζ are measurement
information, Γ and Ξ are the information matrices, H represents
the model of the constraints. Note that the first term χ T

0 Λ0χ0
encodes the anchoring constraint which is treated as a constant
in the optimization problem [32]. In (1), the second term and the
third term refer to the errors from the motion constraints and the
loop constraints.

Moving objects can corrupt the pose estimation and bring false
positives in loop detection. Fig. 1 demonstrates the negative effects
caused by dynamic landmarks. We can see the pose graph is
distorted in Fig. 1c. In addition, a false edge (denoted as a red line)
between two poses is added due to the confused loop detection.

(a) Graph SLAM in a static environment.

(b) Graph SLAM in a dynamic environment.

(c) The jeopardized pose graph in the dynamic environment.

Fig. 1. This figure illustrates the negative effect caused by dynamic landmarks. The
triangles represent robot poses. The pentagrams and hexagrams represent static
and dynamic landmarks respectively. The solid edges link robot poses. The dotted
edges link robot poses and the landmarks sensed at those poses. The black edges
represent the constraints obtained without dynamic objects. The red edges rep-
resent the constraints obtained with dynamic objects. The two yellow hexagrams
in sub-figure (b) represent the two locations of a dynamic landmark observed at
different time. In sub-figure (c), the blue triangles represent robot poses obtained
in the dynamic environment. The light blue triangle represent the pose in the static
environment. The jeopardized pose graph is clearly illustrated by comparing the
robot poses with the light blue triangle. This figure is best viewed in color.

To explain why we use motion removal to improve SLAM, we
augment (1) as follows:

E ′

PoseGraph(χ, θ ) = χ T
0 Λ0χ0

+

∑
i∈P

F i−1
i (θ )∥

(
ϕi−1
i − H(χi−1, χi)

)
∥
2
Γ

i−1
i

+

∑
{m,n}∈P

Gn
m(θ )∥

(
ζ n
m − H(χm, χn)

)
∥
2
Ξn
m

(2)

where ∥ · ∥ represents the 2-norm, θ ∈ RU represents the asso-
ciated dynamic landmarks, U is the number of the landmarks. We
introduce two tuning functions F(θ ) and G(θ ) in this paper, where
G(θ ) has been described in [33]. They are both mappings RU

→ R.
The function F(θ ) tunes the value of the motion constraint error.
It is a non-linear function which can tune the error value close to
the case without dynamic objects. Specially, there existsF(θ ) = 1,
if U = 0. In this case, the environment is static. The performance
of F(θ ) will be degraded if dynamic landmarks are not correctly
identified. The function G(θ ) outputs a binary decision. It deletes
false loop constraints caused by dynamic landmarks. It is described
as follows:

G(θ ) =

{
0, C ∈ ∆

1, otherwise (3)



Y. Sun et al. / Robotics and Autonomous Systems 89 (2017) 110–122 113

Fig. 2. The overview of the proposedmotion removal approach. The approach is di-
vided into three stages: Detection, Tracking and Segmentation. The arrows represent
the directions of data flow. The Detection stage takes as input two consecutive RGB
images. The tracking and Segmentation stages take as input the current RGB image
and the current depth image respectively.

where C denotes the loop constraint with which the pairs of robot
poses are associated,∆ represents the set of false loop closing con-
straints caused by dynamic landmarks. The function can remove
false loop constraints if the dynamic landmarks are correctly deter-
mined. Similar to F(θ ), the performance of G(θ ) will be degraded
if not all the dynamic landmarks are identified. As we can see,
the tuning functions aim to improve RGB-D SLAM by eliminating
the negative effects caused by dynamic landmarks. However, the
prerequisite is to determine the dynamic landmarks θ . The tuning
functions can work well only when θ is correctly determined.
Motion removal is able to correctly determine θ . This explains why
we use motion removal to improve the SLAM performance in this
paper.

4. The proposed motion removal approach

4.1. Overview of approach

The idea of our approach is straightforward. It consists of three
steps. The first step is to roughly detect moving-object motions
based on ego-motion compensated image differencing. The second
step is to enhance the motion detection by tracking motions using
particle filter. The third step is to apply the Maximum-a-posterior
(MAP) estimator on vector quantized depth images to precisely
determine the foreground. It should be noted that what we track
in our approach are motion patches but not moving objects. Our
approach is different from most tracking techniques [34] which
build models for moving objects and track the built models.

Fig. 2 shows an overview for our motion removal approach. We
useRGB images formotiondetection and tracking. The camera ego-
motion is computed using RANSAC-based homography estimation
with two consecutive RGB images. Note that the camera ego-
motion is expressed as perspective transformations in the 2-D
image space. This is because the perspective transformations are
sufficient to reflect the 3-D camera motions including translation
and rotation in this paper. Moving-object motions are roughly
detected by subtracting the current RGB frame with the ego-
motion compensated last RGB frame. The reason why we do not
compensate RGB-D point-cloud frames in 3-D is that depth mea-
surement errors are quadratically increasing when distances are
increasing [35]. Subtracting 3-D point-cloud frames will severely
suffer from the unstable errors. Moreover, methods for computing
3-D transformations, such as the ICP algorithm, are much slower
than 2-D computation methods. In the detection stage, difference
images are the outputs. The pixel values in the difference image
serve as the measurement information for the particle filter. In our
implementation, we track motions in 2-D image space instead of
in 3-D Euclidean space. This is because tracking in 3-D requires
deploying a great many layers of particles in the depth direction. It
will severely increase the computational cost. The posterior belief
computed from the particle filter serves as the likelihood for the
MAP estimation in the segmentation stage. Depth images clustered

by vector quantization are employed for themotion segmentation.
The cluster that has the highest foreground probability computed
by MAP is treated as the foreground.

In our approach, an implicit assumption is that static objects
should dominate the scene. If this assumption does not hold true,
features will bemainly taken frommoving objects and the homog-
raphy will be incorrectly estimated. Another implicit assumption
is that scenes must contain planes. This is a general requirement
for homography computation methods [36]. Our approach will fail
in scenes where this assumption does not hold true, for instance,
natural environments which are usually lack of planes. Moreover,
in order to facilitate the sparse homography estimation method,
features must be available. Our approach will fail if scenes are
featureless. Fortunately, these issues are not critical in most man-
made environments.

In the detection stage, non-zero pixels in difference images
indicate the motions caused by moving objects. Noises in image
differencing results are unavoidable, especially in the cases when
we get incorrectly estimated homography. Thus, we use particle
filter to enhance the motion detection. Note that the noises here
represent the non-zero pixels that are not located on the moving
object. The motion belief of the particle filter is an integral of a
short-term history. It functions as a prior knowledge for moving-
object locations. This prior information alleviates particle diver-
gence caused by the false positives ofmotion detection. Themotion
belief alsomakes our approach robust to short-term stop ofmoving
objects. However, our approach will fail if moving objects become
motionless. This is because measurement information gradually
dominates the decisions in the iterations.

We assume that the parallax between consecutive frames is
negligible. The first reason is that small parallax ensures sufficient
inlier feature associations to correctly estimate the homography.
The second reason is that large objectmovements induced by large
parallax can lead to tracking lost. In most cases, cameras usually
provide a high image streaming rate, such as 30 fps, which ensures
the parallax sufficiently small. Thus, this assumption cannot hinder
the generality of our approach.

4.2. Ego-motion compensated frame differencing

For static cameras, background in consecutive frames remains
not changed. All movements in image sequences are caused by
moving objects. Subtracting the current framewith the last one can
intuitively remove the static background. Moving-object motions
can be indicated by the non-zero pixels in the differencing result.
The frame differencing is described in the formula:

Id(x, y, t) = |I(x, y, t) − I(x, y, t − 1)|, (4)

where |·| represents absolute value, x and y are pixel coordinates, Id
is the intensity value of the pixel (x, y) in the difference image. We
consider the pixel is a possible foreground point if Id(x, y, t) ̸= 0,
otherwise the pixel belongs to background.

However, the idea of frame differencing is not feasible if camera
is moving. The motions in images are induced both by moving
objects and camera ego-motions. Subtracting consecutive frames
brings so many noises that the frame differencing results are
virtually useless. Our idea is to temporarily stabilize the camera
with ego-motion compensation so that the frame differencing is
able to work. We use 2-D perspective transformation matrices
to represent the ego-motions. We warp the last frame with the
perspectivematrix and subtract the current framewith thewarped
frame. Motions are roughly indicated by the frame differencing
results.

Fig. 3 shows the schematic diagram of our idea.We use RANSAC
algorithm to compute the perspective transformation. Let T ∈

SE(2) denote the transformation matrix. Let u and v denote two
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Fig. 3. The schematic diagram of the ego-motion compensated frame differencing technique. The RGB Last and RGB Curr represent the last and current RGB images captured
at time t − 1 and t . We use the RANSAC algorithm to eliminate outlier feature associations and compute the optimal homography. Camera ego-motions are represented as
2-D perspective matrices. Motions are roughly detected by subtracting RGB Curr with the ego-motion compensated RGB Last.

(a) The last RGB frame. (b) The current RGB frame.

(c) Warped version of (a). (d) The difference image.

Fig. 4. The process of the ego-motion compensated frame differencing. The shown
scenario is a person walking in a room. The invalid areas in sub-figure (c) caused by
image warping are filled black. As we can see in sub-figure (d), the walking person
is roughly indicated by the non-zero pixels in the difference image. We can see that
the noises are inevitable in the differencing results.

pixel locations of a feature pair. We warp the point u with T , and
compute the reprojection error:

ξ = ∥Tu − v∥ (5)

where ∥ · ∥ represents the Euclidean distance. We consider the
feature pair is an inlier if ξ < τ , otherwise the pair is an outlier. The
threshold τ is a pre-defined parameter in the RANSAC algorithm.
The RANSAC algorithm random selects 4 feature pairs to compute
T , and determines the inliers from all the feature pairs. The al-
gorithm iterates until a set with the maximum number of inliers
is achieved. Lastly, the RANSAC algorithm computes the optimal
perspective matrix using the found inlier set.

With the optimal perspective matrix, we warp all pixels in the
last frame to get the ego-motion compensated frame IT (x, y, t−1).
Then, (4) can be modified as follows:

I ′d(x, y, t) = |I(x, y, t) − IT (x, y, t − 1)|. (6)

Moving-object pixels can be roughly indicated by the non-zero
pixels in I ′d(x, y, t).

Fig. 4 qualitatively demonstrates the process of the ego-motion
compensated frame differencing. The sequence is captured by a
hand-heldmoving camera. Aswe can see, the parallax between the
consecutive frames is negligible. The difference image is obtained

by subtracting the warped frame with the current frame. The
moving object can be roughly identified by the non-zero pixels in
the differencing results.

4.3. Particle filter-based tracking

Let x denote the state variable of the particle filter. In our
implementation, it is pixel coordinates. The particles here is a set
of selected pixels. Particle location is the coordinates of a pixel. The
state variable of particle i at time t is represented as follows:

xti = [xti , yti ], (7)

where x and y consist of the particle location. The posterior belief
of the state variable at time t can be recursively estimated with a
particle transition model and a measurement model.

Let p(xti |u
t
i , x

t−1
i ) denote the transition probability from time

t −1 to t , and p(zti |x
t
i ) denote the measurement probability at time

t . We have the following Bayesian equations:{
bel(xti ) =

∑
p(xti |u

t
i , x

t−1
i )bel(xt−1

i )
bel(xti ) = ηp(zti |x

t
i )bel(x

t
i )

, (8)

where η is a normalization constant. The belief bel(x0i ) at t = 0
is initialized with a uniform distribution. We randomly deploy the
particles in a uniform distribution in the first iteration.

Based on the observation that object motions are usually non-
linearly distributed in image space, wemodel the transition proba-
bility in a 2-DGaussian distribution. Itmakes our approach adapt to
various types of object movements. As shown in (9), the locations
of a particle at time t are predicted as follows:

p(xti |u
t
i , x

t−1
i )=

1
√
2π |Σ |

exp
[
−

1
2
((xti − µt

i )
T )Σ−1(xti − µt

i )
]

, (9)

where |Σ | is the determinant of the variance Σ , µt
i is the previous

particles that are warped to the current frame using the previously
computed homography.µt

i is obtainedwith the following formula:

µt
i = T t

t−1x
t−1
i , (10)

where xt−1
i is the particle in the last frame, T t

t−1 is the perspective
matrix of the computed homography. Note that the warped parti-
cles which have locations beyond the image range are deleted.

The intensity value in the difference image encodes the
probability of the pixel being the foreground. The measurement
probability is represented as particle weight. To improve the ro-
bustness of weight computation, neighboring pixels are taken into
consideration. The weight of a particle is a weighted average of
the neighboring pixel values in the difference image. We calculate
the weight wi for particle i using a Gaussian kernel. We use circle
shaped neighboring area. Assume there are M number of pixels in
the area. The weight wi is given by:

wt
i =

M∑
j=1

I ′d(xj, yj, t)
1

√
2πυ

exp
(

−
ϱ2

2υ2

)
, (11)
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where xj, yj are the coordinates for pixel j, I ′d(xj, yj, t) is the intensity
value in the difference image, υ is the standard deviation of the
Gaussian kernel, ϱ is the Euclidean distance between pixel j and
particle i, which is calculated as:

ϱ =

√
(xj − xi)2 + (yj − yi)2. (12)

In the re-sampling stage of the particle filter, we use the Se-
quential Importance Re-sampling (SIR) strategy [37] to generate
new particles. The importance is proportional to the weights of
the particles. The particles with higher importance are replicated
until the total number of particles reaches a pre-defined particle
number.

4.4. Vector quantization-based segmentation

Vector Quantization (VQ) is a kind of data lossy compression
method. It maps a vector set into a subset of itself or a set with
less elements. After VQ, the original set is represented by a limited
number of vectors [38]. For VQ in our approach, the vectors are
composed of pixel values and pixel coordinates. The distortion
error D(v, v∗) between a vector v ∈ RZ in the original set and a
vector v∗

∈ RZ in the quantized set is determined as follows:

D(v, v∗) =
1
Z

∥v − v∗
∥, (13)

where ∥ · ∥ represents the 2-norm, Z is the dimensionality of
the vector. To quantize an image is to divide the vectors formed
by all pixels into a set of clusters. Thus, the problem of vector
quantization for an image becomes the problemof clustering pixels
with locality and color information. In this paper, we employ the
K-means clustering algorithm [39] to realize the quantization.

Based on the observation that objects in depth images are easier
to be identified by the depth values, we use depth images for VQ
in this paper. This observation is demonstrated in Fig. 5. As we
can see, the performance of clustering using an RGB image and a
depth image differs greatly. It is obvious that the foreground can
be more easily extracted from the quantized depth image. Using
depth information for foreground segmentation is a benefit here.

With the clustered depth image, we segment motions using
the MAP estimation. Let p(sk,t ) denote the probability of cluster k
being the foreground at time t . To get the motion segmentation
result is to find the cluster that has the maximum posterior fore-
ground probability. The MAP estimation is able to compute the
posterior probability using the likelihood from the tracking results.
Let p(m|sk,t ) denote the likelihood from the particle filter. The
posterior probability p(sk,t |m) can be computed by the following
equation:

p(sk,t |m) =
p(m|sk,t )p(sk,t )

p(m)
, (14)

so the segmentation problem becomes to find the cluster k that has
the maximum posterior probability:

k = argmax
k

p(sk,t |m), (15)

where p(sk,t ) is the prior probability for cluster k being the fore-
ground, p(m) is a normalization constant. The prior probability
obeys a uniform distribution in each iteration. The proportion of
particles that lie in the cluster k is employed as the likelihood:

p(m|sk,t ) =
nt

Nt
, (16)

where nt is the number of particles that lie in the cluster k at
time t , Nt is the total number of the particles at time t . Higher
values of p(m|sk,t ) indicate higher likelihood for cluster k being the
foreground.

(a) The original RGB image. (b) The quantized RGB image.

(c) The original depth image. (d) The quantized depth image.

Fig. 5. The comparison for VQ using an RGB image and a depth image. Note that the
depth values in sub-figure (c) are increasing from red to green. The cluster number
is set to 5 here. Aswe can see, thewalking person ismore easily identified due to the
less texture information in the depth image. The benefit of using depth information
is clearly demonstrated here. This figure is best viewed in color.

5. Experimental results and discussions

In this section, we present the experimental results and discus-
sions. In the first part, we qualitatively demonstrated our motion
removal approach in typical dynamic environments using our self-
generated dataset. In the second part, we integrated the proposed
motion removal approach into the front end of DVO (Dense Visual
Odometry) SLAM [8] which is a kind of dense RGB-D SLAM system.
Our approach was evaluated by examining the performance of the
integrated SLAM system. Experiments were performed using the
public TUM RGB-D dataset [30] and extensive quantitative evalua-
tion results were given. A PC with an Intel i3 CPU and 4GBmemory
was used to run the programs. The RGB-D images were processed
at the 640 ×480 resolution. The numbers of clusters was fixed to
5. For DVO SLAM, we left the open-source implementation [40]
unchanged. Our approach cannot work in real time at the current
stage, since our approach involves a dense image segmentation
which costs about half a second per frame.

5.1. Demonstration using our dataset

In this section, we generated an RGB-D dataset with a walking
person as the moving object. The person walks in a normal speed
during the experiments. Image sequences was captured using a
hand-held Asus Xtion Pro Live camera [41]. There were two se-
quences: office and hallway, which were recorded in an office
room and an indoor hallway respectively.

Figs. 6 and 7 qualitatively demonstrate sample experimental
results using the two sequences. As we can see, our approach
produces precise motion removal results. In the tracking results,
however, the particles concentrate on parts of the body but not
the whole body. This is because the motions on these areas are
generally larger than the motions on other parts of the body. More
non-zero pixels fromdifference images can be found at these areas.
The particles tend to converge on areaswhere largermeasurement
values are given.
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Fig. 6. Sample experimental results using the office sequence. The sub-figures from top row to bottom row are motion tracking results, depth images andmotion removal
results respectively. The red dots represent the locations of the particles. The width of the ROI is 1.4 times of the width of the rectangular contour of the particles. The height
of the ROI is set to the height of the image. This figure is best viewed in color.

Fig. 7. Sample experimental results using the hallway sequence. The sub-figures from top row to bottom row aremotion tracking results, depth images andmotion removal
results respectively. The red dots represent the locations of the particles. The width of the ROI is 1.3 times of the width of the rectangular contour of the particles. The height
of the ROI is set to the height of the image. This figure is best viewed in color.

In Fig. 7, some background objects are misclassified as fore-
ground. This is caused by the depth closeness between the fore-
ground and the background. Background objects are wrongly clas-
sified into the foreground cluster due to the close depth values.
In order to alleviate this problem, we do the image segmentation
within an Region-of-interest (ROI). The ROI is adaptively deter-
minedaccording to the rectangular contour of the particles. Note
that the experimental results with the TUM dataset are obtained
without using ROI. This is because we would like to present quan-
titative results with prior information at the minimum level. In

addition, there are normally discriminative distances between the
foreground and the background in the TUM dataset, so using ROI
will not contribute too much.

Fig. 8 shows two typical segmentation failure cases. In Fig. 8b,
the walking person is over-segmented because the number of
clusters seems too large for this case. In Fig. 8d, the distance
between the body and the leg is so large that the algorithm fails
to classify the whole body into one cluster. These two problems
can be alleviated by decreasing the number of clusters. This figure
also reveals the weakness of using a fixed number of clusters.
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(a) An example for case I. (b) Segmentation result of (a).

(c) An example for case II. (d) Segmentation result of (c).

Fig. 8. Two typical failure cases formotion removal. Reddots represent the locations
of the particles, which shows the tracking results. The figure reveals the weakness
of using a fixed number of clusters. This figure is best viewed in color.

5.2. Evaluation using TUM dataset

In this section, we integrated the proposed motion removal
approach into the front end of theDVOSLAMsystem. Our approach
acted as a pre-processing stage to filter out data that were associ-
ated with moving objects. The g2o library [42] was used for the
pose graph optimization in the SLAM back end. Quantitative eval-
uation results were obtained using the TUM Dynamic Objects
dataset. The TUM dataset provides ground truth captured by a
precise motion capture system for each sequence. Motion removal
was processed through all the frames in each sequence.

The TUM Dynamic Objects dataset contains several typi-
cal dynamic-environment scenarios such as desk, sitting and
walking, etc. In the desk sequences, a person walks into a scene
and then spends most of the time sitting at a desk. The person in-
teracts with some objects while sitting. In the sitting sequences,
two persons sit at a desk, and talk, gesticulate a little bit. We
consider the movements in the desk and sitting sequences as
low-dynamic motions in this paper. In the walking sequences,
two persons walk back and forth in the scene and sit at a desk
occasionally. The movements in the walking sequences are con-
sidered as high-dynamic motions. The Dynamic Objects dataset
includes several typical types of camera ego-motions. In the desk
sequences, the camera is steadily hold by a walking person. In the
walking andsitting sequences, there are 4 types of camera ego-
motions: halfsphere, rpy, static and xyz.

• halfsphere: The camera moved following a halfsphere-
like trajectory.

• rpy: The camera rotated along the roll–pitch–yaw axes.
• static: The camera was roughly kept in place manually.
• xyz: The camera moved along the x-y-z axes.

For brevity, we use the words fr, half, w, s, d, v
as representatives for freiburg, halfsphere, walking,
sitting, desk, validation in the names of the sequences.

Fig. 9 demonstrates some selectedmotion removal results using
the Dynamic Objects dataset. As we can see, our approach
is able to remove moving objects effectively in various challeng-
ing scenarios. However, false positives of motion removal can

be found in some frames. For instance, the chair and the ta-
ble in sub-figures fr3/w/half, fr3/w/half/v, fr2/d/person
and fr3/w/rpy/v are wrongly classified as foreground. This is
caused by the depth closeness between the background and the
foreground. Some pepper-and-salt false positives can be found
in the sub-figure fr3/s/xyz. They are caused by the noises of
the depth measurement. In the sub-figure fr3/w/xyz/v, only
one person is segmented. This is because we use MAP to deter-
mine the foreground. Only one motion cluster can be labeled as
foreground. Motions that cannot be classified into the foreground
cluster are neglected. In other sub-figures, because the twopersons
are classified into onemotion cluster, we can see they are correctly
segmented.

We use themetrics Absolute Trajectory Error (ATE) and Relative
Pose Error (RPE) for the quantitative evaluation. The metric ATE
measures the global consistency. Let L ∈ SE(3) and R ∈ SE(3)
denote the ground truth and estimated camera poses. Let π (R, L)
denote the rigid transformationwhich aligns the estimated camera
trajectory to the ground truth trajectory. The ATE Ji at pose i is
defined as,

Ji = L−1
i π (R, L)Ri. (17)

The metric RPE measures the odometry drift. Let Hi,i+δ denote
the transformation from camera pose i to camera pose i + δ. We
have HL

i,i+δ = L−1
i Li+δ and HR

i,i+δ = R−1
i Ri+δ which represent the

transformations calculated from the ground truth poses and the
estimated poses. The RPE Qi at pose i is defined as,

Qi = HL
i,i+δ

−1
HR

i,i+δ, (18)

where the interval δ can be set to the value of frame rate for per-
second evaluation or 1 for per-frame evaluation. Note that we use
per-second evaluation in this paper. For details about ATE and RPE,
we refer readers to [30] for more information.

RANSAC-basedmethods are generally sensitive to the reprojec-
tion error threshold τ , which has been described previously. Thus,
it is necessary to choose an appropriate value for τ . We observe
the SLAM performance in terms of ATE and the translational drift
of RPE with different tries of τ using the TUM fr3/w/xyz/v
sequence. The results are plotted in Fig. 10a. As we can see, the
error values and the standard deviations tend to grow when τ
is increasing. This shows that the SLAM performance is degraded
and the instability is increasing when τ is increasing. Furthermore,
we observed that the error values and the standard deviations are
relatively small when τ is less than 6. Thus, we empirically choose
3 as the reprojection threshold in our experiments.

We also evaluate the SLAM performance given different values
for the number of particles in the tracking stage. Similar to the
experiments of the RANSAC parameter tuning, we observe the
values of ATE and the translational drift of RPE using the TUM
fr3/w/xyz/v sequence. The results are plotted in Fig. 10b. As
we can see, the ATE and the RPE results are not sensitive to the
numbers of particles. However, the values seem not stable when
the number of particles is too small. Thus, we empirically set the
number of particles to 1000 in this paper.

We present the quantitative evaluation results in Table 1-
Table 3. The first column of the tables shows the sequence names.
The term Without Our Approach represents the original DVO
SLAM approach. The term With Our Approach represents the
DVO SLAM with our motion removal approach incorporated in
the SLAM front end. To facilitate further comparisons, we present
the values of RMSE, Mean Error, Median Error and the Standard
Deviation (S.D.) in this paper. We expect that the SLAM perfor-
mance of the original DVO SLAM algorithm is improved by our
motion removal approach. The improvement values in the tables
are calculated as follows:

𭟋 =

(
1 −

β

α

)
× 100%, (19)
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Fig. 9. Selected motion removal results using the TUM Dynamic Objects dataset. Corresponding RGB images are also presented. As we can see, our motion removal
approach is able to effectively remove the moving objects in such challenging dynamic scenarios.

where𭟋 represents the improvement value,α represents the value
without our approach, β represents the value with our approach.
We highlight the RMSE values in the tables. The RMSE values are
prone to be influenced by large or occasional errors [43]. Thus,
RMSE values can better indicate the robustness compared to the

mean andmedian values.We also highlight the S.D. values, because
they encode the stability of the system.

As we can see from Table 1, the average RMSE and S.D. im-
provement values for the high-dynamic sequences are 80.12% and
68.89% respectively. This demonstrates that our approach is able
to greatly improve the SLAM performance in terms of ATE for
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(a) The parameter tuning for the error threshold. (b) The parameter tuning for the number of particles.

Fig. 10. The parameter tunings for the RANSAC reprojection error threshold and the number of particles using the TUM fr3/w/xyz/v sequence. RMSE values for ATE are
plotted in the blue curves. RMSE values for the translational drift are plotted in the red curves. The error bars encode the standard deviations. For the tuning of the RANSAC
parameter, the number of particles is set to 1000. For the tuning of the number of particles, the RANSAC parameter is set to 3. The results from sub-figure (a) indicate that
relatively good SLAM performance can be obtained when the error value is less than 6. The results from sub-figure (b) show that the SLAM performance is not sensitive to
the number of particles. This figure is best viewed in color.

Table 1
ATE in meters for the experiments without and with our motion removal approach. Low dynamic sequences are denoted with a superscript star. Others are high-dynamic
sequences. Our approach effectively improves the RGB-D SLAM performance in all scenarios in terms of ATE.

Sequences Without our approach With our approach Improvements

RMSE Mean Median S.D. RMSE Mean Median S.D. RMSE Mean Median S.D.

fr3/w/half 0.5287 0.4780 0.4018 0.2260 0.1252 0.0867 0.0671 0.0903 76.32% 81.86% 83.30% 60.04%
fr3/w/rpy 0.7304 0.6730 0.6649 0.2837 0.1333 0.1035 0.0829 0.0839 81.75% 84.62% 87.53% 70.43%
fr3/w/static 0.2120 0.1628 0.1134 0.1358 0.0656 0.0377 0.0229 0.0536 69.06% 76.84% 79.81% 60.53%
fr3/w/xyz 0.5966 0.5334 0.4508 0.2672 0.0932 0.0764 0.0608 0.0534 84.38% 85.68% 86.51% 80.01%
fr3/w/half/v 0.3735 0.3142 0.2305 0.2019 0.0811 0.0619 0.0460 0.0524 78.29% 80.30% 80.04% 74.05%
fr3/w/rpy/v 0.9115 0.8740 0.8677 0.2588 0.2333 0.1420 0.0888 0.1852 74.40% 83.75% 89.77% 28.44%
fr3/w/static/v 0.2016 0.1365 0.0785 0.1485 0.0319 0.0232 0.0169 0.0220 84.18% 83.00% 78.47% 85.19%
fr3/w/xyz/v 0.8778 0.7102 0.5067 0.5158 0.0655 0.0525 0.0397 0.0392 92.54% 92.61% 92.16% 92.40%
fr3/s/half∗ 0.0616 0.0524 0.0431 0.0324 0.0470 0.0399 0.0315 0.0249 23.70% 23.85% 26.91% 23.15%
fr3/s/xyz∗ 0.0505 0.0393 0.0336 0.0317 0.0482 0.0391 0.0326 0.0282 4.55% 0.51% 2.98% 11.04%
fr2/d/person∗ 0.0853 0.0834 0.0868 0.0180 0.0596 0.0546 0.0530 0.0239 30.13% 34.53% 38.94% −32.78%
fr2/d/person/v∗ 0.1468 0.1305 0.1170 0.0672 0.0394 0.0352 0.0333 0.0177 73.16% 73.03% 71.54% 73.66%

Table 2
Translational drift (RPE) in m/s for the experiments without and with our motion removal approach. Low dynamic sequences are denoted with a superscript star. Others
are high-dynamic sequences. Our approach generally improves the RGB-D SLAM performance in terms of the translational drift.

Sequences Without our approach With our approach Improvements

RMSE Mean Median S.D. RMSE Mean Median S.D. RMSE Mean Median S.D.

fr3/w/half 0.3284 0.2074 0.0832 0.2546 0.1672 0.1078 0.0696 0.1278 49.09% 48.02% 16.35% 49.80%
fr3/w/rpy 0.4644 0.3357 0.2175 0.3210 0.1751 0.1363 0.0973 0.1099 62.30% 59.40% 55.26% 65.76%
fr3/w/static 0.2451 0.1277 0.0231 0.2093 0.0842 0.0446 0.0178 0.0714 65.65% 65.07% 22.94% 65.89%
fr3/w/xyz 0.4019 0.2801 0.1640 0.2882 0.1214 0.0889 0.0537 0.0827 69.79% 68.26% 67.26% 71.30%
fr3/w/half/v 0.2682 0.1529 0.0532 0.2203 0.0955 0.0688 0.0436 0.0661 64.39% 55.00% 18.05% 70.00%
fr3/w/rpy/v 0.3907 0.2303 0.0909 0.3156 0.3077 0.1712 0.0879 0.2556 21.24% 25.66% 3.30% 19.01%
fr3/w/static/v 0.1853 0.0955 0.0311 0.1589 0.0436 0.0308 0.0219 0.0309 76.47% 67.75% 29.58% 80.55%
fr3/w/xyz/v 0.4614 0.2624 0.0527 0.3795 0.0783 0.0575 0.0386 0.0532 83.03% 78.09% 26.76% 85.98%
fr3/s/half∗ 0.0466 0.0346 0.0235 0.0312 0.0458 0.0373 0.0301 0.0265 1.72% −7.80% −28.09% 15.06%
fr3/s/xyz∗ 0.0360 0.0245 0.0165 0.0264 0.0330 0.0244 0.0172 0.0222 8.33% 0.41% −4.24% 15.91%
fr2/d/person∗ 0.0147 0.0116 0.0097 0.0091 0.0172 0.0139 0.0116 0.0101 −17.01% −19.83% −19.59% −10.99%
fr2/d/person/v∗ 0.0171 0.0145 0.0127 0.0090 0.0252 0.0193 0.0149 0.0163 −47.37% −33.10% −17.32% −81.11%

the high-dynamic scenarios. The stability is also enhanced with
our approach. By examining the RMSE values, we find that our
approach brings more improvements in the static and xyz se-
quences. The reason is that camera movements are relatively slow
in these sequences. This is a benefit for our approach because
slow camera motions ensures small parallax between consecutive
frames. For the low-dynamic sequences, we get 7.73% average
RMSE improvement and 18.77% S.D. improvement. As we can see,

our approach provides less improvements for the low-dynamic
cases. We think the reason is that dynamic objects can be easily
identified as outliers in the low-dynamic sequences. In addition,
low-dynamic objects in the tested sequences were normally kept
in a fixed place. This hardly jeopardizes the loop closing process.
Thus, the original DVO SLAM algorithm is able to achieve suffi-
ciently good performance in the low-dynamic sequences, which
leaves limited spaces for our improvements.
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(a) fr3/w/half—without. (b) fr3/w/half/v—without. (c) fr3/w/xyz—without.

(d) fr3/w/half—with. (e) fr3/w/half/v—with. (f) fr3/w/xyz—with.

Fig. 11. Plots of ATE for the high-dynamic sequences fr3/w/half, fr3/w/half/v, fr3/w/xyz. The wordswithout andwith represent the experiments performedwithout
and with our approach. This figure is best viewed in color.

(a) fr2/d/person—without. (b) fr3/s/half—without. (c) fr3/s/xyz—without.

(d) fr2/d/person—with. (e) fr3/s/half—with. (f) fr3/s/xyz—with.

Fig. 12. Plots of ATE for the low-dynamic sequences fr2/d/person, fr3/s/half, fr3/s/xyz. The wordswithout andwith represent the experiments performed without
and with our approach. This figure is best viewed in color.

Tables 2 and 3 show the visual odometry performance. As we
can see, the results are in accordance with the above ATE analysis.

The sequences with slow camera ego-motions exhibit high im-
provement values, and the original DVO SLAM algorithm performs
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Table 3
Rotational drift (RPE) in deg/s for the experiments without and with our motion removal approach. Low dynamic sequences are denoted with a superscript star. Others
are high-dynamic sequences. Our approach generally improves the RGB-D SLAM performance in terms of the rotational drift. The unit for the median values is rad/s.

Sequences Without our approach With our approach Improvements

RMSE Mean Median S.D. RMSE Mean Median S.D. RMSE Mean Median S.D.

fr3/w/half 6.6125 4.2811 0.0412 5.0395 5.0108 3.2882 0.0412 3.7810 24.22% 23.19% 0.00% 24.97%
fr3/w/rpy 9.0292 6.7447 0.0760 6.0029 4.3755 3.3596 0.0419 2.8033 51.54% 50.19% 44.87% 53.30%
fr3/w/static 4.2761 2.2631 0.0090 3.6282 2.0487 1.0548 0.0084 1.7563 52.09% 53.39% 6.67% 51.59%
fr3/w/xyz 8.6593 5.5484 0.0598 6.6483 3.2346 2.2587 0.0259 2.3154 62.65% 59.29% 56.69% 65.17%
fr3/w/half/v 5.4066 3.4424 0.0274 4.1692 3.3035 2.1688 0.0246 2.4918 38.90% 37.00% 10.22% 40.23%
fr3/w/rpy/v 6.7382 4.2855 0.0379 5.1998 4.4968 3.2548 0.0361 3.1028 33.26% 24.05% 4.75% 40.33%
fr3/w/static/v 3.2292 1.7556 0.0101 2.7103 1.0815 0.6967 0.0082 0.8272 66.51% 60.32% 18.81% 69.48%
fr3/w/xyz/v 8.7977 5.2338 0.0256 7.0716 1.9484 1.5431 0.0203 1.1896 77.85% 70.52% 20.70% 83.18%
fr3/s/half∗ 2.4747 1.8168 0.0205 1.6802 2.3748 1.8932 0.0255 1.4336 4.04% −4.21% −24.39% 14.68%
fr3/s/xyz∗ 0.9956 0.8114 0.0119 0.5769 0.9828 0.8060 0.0119 0.5622 1.29% 0.67% 0.00% 2.55%
fr2/d/person∗ 0.5986 0.4994 0.0077 0.3300 0.7341 0.6151 0.0093 0.4007 −22.64% −23.17% −20.78% −21.42%
fr2/d/person/v∗ 0.6271 0.5406 0.0082 0.3179 0.8843 0.7263 0.0107 0.5045 −41.01% −34.35% −30.49% −58.70%

well in the low-dynamic sequences. In the desk sequences, we
found that our approach degrades the original performance. We
think the reason is that the low-dynamic motions are usually not
continuous in the desk sequences. Moving objects often become
motionless in some frames. This is an unfavorable factor formotion
tracking. It distracts the particles and makes our approach fail to
segment the motions. Thus, more false segmentation results are
generated. RPE performance is degraded due to the wrongly dele-
tion of useful information. In addition, there is no object moving
in the early part of the desk sequences. The scenarios during this
period are in fact static environments,where noises of framediffer-
encing dominate themotion detection. Our approach is susceptible
to the noises in such scenarios and produces lots of false positives.
We think this is also a reason for the performance degeneration.

Fig. 11 shows selected ATE plots for the high-dynamic cases.
As we can see, the errors are greatly reduced with our approach.
Fig. 12 shows selected ATE plots for the low-dynamic cases.We can
see the original DVO SLAM algorithm provides good performance
in these sequences.With our approach incorporated into the SLAM
front end, the ATE values are further reduced.

6. Conclusions

We proposed here an RGB-D data-based motion removal ap-
proach. The motivation of this paper is to improve RGB-D SLAM
in dynamic environments using the proposed motion removal
approach. The proposed approach was divided into three stages.
We tightly coupled the three stages in an on-line framework. In
the experiments, we incorporated the approach into the front
end of the DVO SLAM algorithm. Our approach acted as a pre-
processing stage to filter out data that were associated with mov-
ing objects. Quantitative evaluations were carried out using the
public TUMRGB-Ddataset. The results show that our approachwas
able to effectively improve the RGB-D SLAM performance in var-
ious challenging scenarios. However, our approach still presents
some limitations. For instance, the homography estimation will be
degraded when parallax between consecutive frames is large. The
tracking will fail when moving objects become motionless. As we
use MAP to determine the foreground, only one motion cluster
can be segmented. This limits our approach for scenarios with
many moving objects. To overcome these limitations, we would
like to enhance our approachwith learning capability in the future.
Motion appearancewill be learned on the fly. In addition,wewould
like to extend our approach to a full RGB-D SLAM system, which
can adaptively work both in static and dynamic environments.
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