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a b s t r a c t

RGB-D data-based Simultaneous Localization and Mapping (RGB-D SLAM) aims to concurrently estimate
robot poses and reconstruct traversed environments using RGB-D sensors. Many effective and impressive
RGB-D SLAM algorithms have been proposed over the past years. However, virtually all the RGB-D SLAM
systems developed so far rely on the static-world assumption. This is because the SLAM performance is
prone to be degraded by the moving objects in dynamic environments. In this paper, we propose a novel
RGB-Ddata-basedmotion removal approach to address this problem. The approach is on-line anddoes not
require prior-known moving-object information, such as semantics or visual appearances. We integrate
the approach into the front end of an RGB-D SLAM system. It acts as a pre-processing stage to filter out
data that are associated with moving objects. Experimental results demonstrate that our approach is able
to improve RGB-D SLAM in various challenging scenarios.

© 2018 Published by Elsevier B.V.

1. Introduction

Simultaneous Localization andMapping (SLAM) is a fundamen-
tal step for many robotic applications. It concurrently estimates
robot poses and reconstructs traversed environmentmodels.Many
effective SLAM algorithms using visual sensors, such as monocular
cameras [1], stereo cameras [2] and RGB-D cameras [3], have been
proposed over the past years. Related technologies, such as the
augmented reality [4] and autonomous driving [5], have benefited
from the development of the SLAM technology. It is worth noting
that the advent of the RGB-D cameras has changed the computer
vision world [6]. They provide colored point clouds with real-scale
distance information, which greatly benefits the dense 3-D envi-
ronment reconstruction. Many impressive RGB-D SLAM systems
have been developed [7–12] in recent years, and most of them
adopt the graph optimization framework. We refer readers to this
survey [13] to get an overview of the progress on the graph SLAM
algorithm.
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However, virtually all the current RGB-D SLAM algorithms are
proposedunder the static-world assumption. It requires that there is
no moving object existing in the environment during the traversal
of robots. The data associations in the SLAM front end can be
hindered by moving objects. With incorrect data associations fed
into the SLAM back end, the graph optimization process could be
severely jeopardized, which finally leads to a catastrophic failure
for the localization and mapping processes. Thus, the technology
of RGB-D SLAM is still vulnerable in dynamic environments.

The data associations in the SLAM front end consists of two
components, namely, the short-termdata association and the long-
term data association [13]. The short-term data association de-
termines adjacent pose estimations, while the long-term one has
an impact on the loop detection. Take as an example the sparse
feature-based RGB-D SLAM. Standard robust estimators, such as
the RANdom SAmple Consensus (RANSAC) algorithm [14], are
usually employed in the SLAM front end to reject outlier feature
associations. However, it is hard to reliably reject outliers when
moving objects are not trivial in the camera field of view. In such
a case, the outliers are unavoidably used for computing the robot
poses, which makes the pose estimation erroneous. When a robot
returns to a previously visited place where moving objects have
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Fig. 1. The qualitative comparison for the point-cloud maps built by ORB-SLAM [11] without and with our motion removal approach in a dynamic environment. (a) and (b)
show the map produced by the original ORB-SLAM system. The map quality is significantly degraded. (c) and (d) show the map produced by the integrated SLAM system.
With our approach, the ORB-SLAM system is able to build a correct map. The comparison clearly demonstrates the negative effects caused by moving objects in such a
dynamic environment, and the enhanced performance provided by our approach.

gone away, the loop detection would be confused by matching the
same scene but with different visual appearances. If we eliminate
moving objects at the first exploration of a place, we can compare
the image frames using just the static feature points, which would
lead to a much more reliable loop detection result. Moreover,
we can merely use the static feature points to get accurate robot
pose estimations. Therefore, eliminating moving objects is able to
reduce the incorrect data associations, which is critical to improve
the SLAM performance.

In this paper, we develop a novel RGB-D data-based motion
removal approach to address the problem of RGB-D SLAM in dy-
namic environments. We refer to the dense pixel-wisely moving-
object segmentation as motion removal. Our approach serves as
a pre-processing stage to filter out data that are associated with
moving objects.With our approach, incorrect data associations can
be greatly reduced in the SLAM front end.

Fig. 1 qualitatively compares the resulting point-cloud maps
produced by the ORB-SLAM system [11] and the system integrated
with our motion removal approach in a dynamic environment.
In this scenario, two persons are playing with a basketball in an
office room, where themoving objects are the two persons and the
basketball. We perform the SLAM algorithm in this environment
using a hand-held Asus Xtion RGB-D camera, which is moved in
a circle-like trajectory in the scene. Comparing Fig. 1a with b, we
could see that the quality of the resulting map is substantially
degraded. Almost no object or scene structure is correctly aligned.
This is mainly caused by the jeopardized camera pose estimations
due to the incorrect data associations. Moreover, moving objects
are recorded as spurious objects in the resultingmap,whichmakes

the map virtually useless for future applications, such as the map-
based navigation. The point-cloud map built with our motion
removal approach is displayed in Fig. 1c and d. The models for
the desks, monitors, wall, floor and scene structure are correctly
built. Virtually no point from the moving objects is recorded in
the map. The holes caused by motion removal in the point-cloud
map are complemented by the frame fusion with redundant scans.
Fig. 1 clearly illustrates the negative effect caused by moving ob-
jects in dynamic environments. It should be noted that the tested
environment shown in Fig. 1 is a small-scale environment. We
believe that using such an examplewould be sufficient to illustrate
the negative impact caused by moving objects. This is because
large-scale environments are generally more challenging for SLAM
algorithms. By performing the experiments in such a small-scale
environment, the ORB-SLAM system has already given the unsat-
isfied performance. The performance in large-scale dynamic envi-
ronments would not be better than this. The main contributions of
this paper are summarized as follows:

1. We propose a novel RGB-D data-based on-line motion re-
moval approach. A foreground model is built and updated
incrementally. No prior information of moving objects, such
as semantics or visual appearances, is needed.

2. We explain why we use motion removal to address the
problem of RGB-D SLAM in dynamic environments. The
experimental results confirm that the robustness of RGB-D
SLAM can be increased with motion removal.

3. We integrate our motion removal approach with an RGB-
D SLAM system. Evaluations and method comparisons are



Y. Sun et al. / Robotics and Autonomous Systems 108 (2018) 115–128 117

performed with the widely used TUM RGB-D benchmark
dataset [15].

The remainder of this paper is organized as follows. Section 2
reviews the related work. Section 3 formulates the problem of
RGB-D SLAM in dynamic environments and explains why we use
motion removal to address this problem. Sections 4 and 5 give
the overview and the details of our approach, respectively. The
experimental results are presented in Section 6. We conclude this
paper and discuss the future work in the last section.

2. Related work

For Visual SLAM in dynamic environments, the mainstream
solution is to identify the features or pixels that are associatedwith
moving objects. This process is referred to asmotion segmentation
and many approaches have been proposed. We generally divide
the motion segmentation approaches into two categories: sparse
methods and dense methods. The sparse methods identify feature
points frommoving objects, while the dense ones segmentmoving
objects pixel-wisely.

2.1. Sparse motion segmentation

Lin et al. [16] extended the SLAM and Moving Object Tracking
(SLAMMOT) algorithm [17] with visual information. They assumed
that adding a new feature from moving objects into the SLAM
system can degrade the SLAM performance. Moving-object fea-
tures were detected based on this assumption by examining the
SLAM performance with and without adding a new feature. Ozden
et al. [18] detected and trackedmoving-object features by selecting
motion models from an over-complete set of motion hypothesis.
The approach was not suitable for long sequences due to the huge
amount of combinatorial trials of motion models. Zou et al. [19]
was the first to use multiple cameras for SLAM in dynamic en-
vironments. Feature points from dynamic objects were identified
based on a two-step verification scheme. In the first step, intra-
camera outliers were found by reprojection errors. The outliers
were considered as the candidates of dynamic feature points. In
the second step, the outliers were verified by checking whether
they were inter-camera inliers. If they were not inter-camera
outliers, the feature points were considered as dynamic points.
Tan et al. [20] observed that feature points from dynamic objects
normally aggregated together while the feature points from static
objects usually distributed evenly. Based on this observation, a
prior-based adaptive RANSAC algorithm was proposed to discrim-
inate moving-object features against static-object features. Wang
et al. [21] proposed a method to group neighboring feature points
that share close scene flows as clusters. The method employed
the clustered feature pairs to compute the transformation matrix
instead of directly selecting random feature pairs. The feature
points from static objects were indicated from the largest inlier
group.

2.2. Dense motion segmentation

The major limitation of the sparse methods is that moving ob-
jects are unavoidably recorded as spurious objects in the resulting
maps. In order to build clear maps, moving objects are required to
be densely segmented. As aforementioned, we refer to the dense
motion segmentation as Motion Removal. Our approach falls into
this category.

Wang et al. [22] proposed an off-line motion removal method
based on the long-term video analysis algorithm [23]. The method
merged the regions that shared the same motion model and con-
sidered the largest group as static objects. Jiang et al. [24] pro-
posed an off-line trajectory clustering method based on the sparse

subspace clustering algorithm [25]. Dense motion segmentation
was realized using a multi-seeded region growing technique with
the classified moving-object trajectories. As the method relies on
the consistency of the tracked features, it suffers from tracking
lost and object occlusions. Sevilla-Lara et al. [26] improved the
optical flow estimation with semantic segmentation. The satisfied
performance was promising for motion removal. However, as the
method relies on the prior-known semantic information of objects,
it is not suitable for applications in unknown environments. Vineet
et al. [27] proposed a semantic fusion algorithm by modifying the
Truncated Signed Distance Function (TSDF) fusion scheme [28]
with the information from semantic segmentation. The algorithm
accelerated the data fusing in dynamic spaces by assigning higher
weights to the voxels that are labeled as moving objects, which
was able to avoid fusing the depth data from moving objects
into the static scene. Similar as [26], the method relies on the
prior-known semantic knowledge, which limits the applications
in unknown environments. Jiang et al. [29] proposed an off-line
flow field analysis method to discriminate the static flows against
the dynamic flows with a 3-D range finder. Individual object flows
were grouped using the proposed sparse flow clustering tech-
nique. Moving objects were pixel-wisely segmented using a region
growing algorithm with the clustered flows. The method relies
on the feature-rich point-cloud data produced by long-range 3-
D Lidars so that the ego-motion compensation can be performed
using the loam_velodyne algorithm [30]. Therefore, the method
is not suitable for RGB-D cameras which can only provide point
clouds with limited geometric features due to the short range
measurements.

Our RGB-D data-based motion removal approach differs the
related work in mainly two aspects. Firstly, our approach is on-
line. No future data or batch data processing is required. Thus, it
is able to support the on-line SLAM process. We believe that this
feature is of great significance for robotic applications, because
there exist scenarios that robots must localize themselves real-
timely and moving objects could not be totally evacuated to leave
only static objects in the environments for mapping. For instance,
many international airports open 24 h a day. Moving objects al-
ways exist in such environments that robots are required to do on-
line localization andmapping in dynamic environments. Secondly,
our approach does not rely on prior-known information of moving
objects, such as semantics or visual appearances. It is applicable
in unknown environments, where motions cannot be previously
known. We consider this as a key benefit of our approach. In real-
world environments, the motion status of objects is indetermi-
nate, so it is difficult to predict moving objects in advance. In
addition, enumerating all the possible moving objects is almost
impracticable. Having no assumptions on moving objects enables
our approach to work in the most general case.

The most similar work to ours is the RGB-D camera-based
motion removal method presented in [31]. The method is on-
line and developedwithout prior-known object information. How-
ever, as the method relies on the Maximum-a-Posterior scheme
to determine the foreground, it could segment only one cluster
of moving objects with close depth measurements. In most cases,
the method only segments one moving object at a time. Differ-
ent from [31], our approach models the foreground in different
classes, so there is no limit on the number of moving objects for
segmentation. In addition, our method is equipped with the on-
line learning capability, which allows it to update the foreground
model incrementally. The information from disappeared or newly
appeared moving objects can be cleared or added into the model
timely, while the method proposed in [31] has no such on-line
incremental learning capability.
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Fig. 2. We use motion removal as the solution to address the problem of RGB-D SLAM in dynamic environments. The diagram depicts a typical graph SLAM structure. The
front end constructs the graph for the SLAM problem. The back end optimizes the graph to generate the optimal estimations for the camera poses. In our approach, Motion
Removal is embedded into the SLAM front end, which is highlighted with a red box in the figure. It acts as a pre-processing stage to filter out data that are associated with
moving objects. The figure is best viewed in color.

3. Problem statement

This section describes the problem of RGB-D SLAM in dynamic
environments and explainswhywe usemotion removal to address
this problem. The SLAM problem can be naturally described in a
graph structure [32], where the vertexes encode robot poses or
landmark positions, and the edges represent constraints between
vertexes. The constraints are pose transformations estimated from
odometry, landmark reprojections, etc. The SLAM problem is to
find the vertexes with the measured constraints. The graph SLAM
consists of twoparts: the front endwhich constructs the graph, and
the back end that minimizes a non-linear error function to find the
optimal configurations for the vertexes.

In the probabilistic view [33], finding the optimal values in
graph SLAM is to solve a Maximum-A-Posterior (MAP) problem.
Let X and L denote camera poses and landmark positions, where
X = {xt : t = 0, 1, . . . , n}, L = {ℓt : t = 0, 1, . . . , n}, xt and ℓt
represent the camera pose and landmark position at time t . Note
that each ℓt is a set of landmark positions. The MAP estimation is
to find the optimal value X ∗ and L∗ by maximizing the posterior:

X ∗,L∗
= argmax

X ,L
p(X ,L|Z,U) (1)

where Z = {zt : t = 1, 2, . . . , n} and U = {ut : t = 1, 2, . . . , n}
are the measurements and the control inputs. According to the
Bayesian rule, the posterior in (1) is expressed as:

p(X ,L|Z,U) =
p(Z|X ,L,U)p(X ,L|U)

p(Z|U)
(2)

Let η = p(Z|U)−1, where η is a constant because it is independent
ofX andL. The term p(Z|X ,L,U) reduces to p(Z|X ,L) by dropping
the irrelevant conditioning variable U. Thus, the posterior in (1) is
expressed as:

p(X ,L|Z,U) = ηp(Z|X ,L)p(X ,L|U) (3)

In RGB-D SLAM, the odometry is normally computed from visual
measurements, so it can be generalized into the measurement
model. Thus, we ignore the variable U and assume there is no
prior knowledge about X and L. The MAP estimation reduces to
a maximum likelihood problem:

X ∗,L∗
= argmax

X ,L
κp(Z|X ,L) (4)

where κ = ηp(X ,L) is a new constant. We assume that the
measurement Z is generated according to the Gaussian distribu-
tion N

(
ζt (xt , ℓt ), Ξt

)
, where ζt (·) is the measurement function at

time t , Ξt is the error covariance at time t [34]. This leads to the
likelihood function at time t:
p(zt |xt , ℓt )

= exp
{
−

1
2

[
zt − ζt (xt , ℓt )

]T
Ξ−1

t

[
zt − ζt (xt , ℓt )

]} (5)

The formulation in (5) is determined according to the individual
problem. In bundle adjustment, for instance, ζt (·) is a projective

function from 3-D points to 2-D image pixels, zt represents the
corresponding 2-D pixel coordinates. For odometry, ζt (·) models
the relative transformations between consecutive poses, zt de-
notes the measured consecutive pose transformations. For loop
closure, ζt (·) computes the relative transformation between the
loop candidates, zt is the measured transformation between the
poses. Note that for the latter two cases, the difference operation
are performed on manifold SE(3).

The data associations in the SLAM front end construct the
error terms in (5). In other words, the correspondences between
measurements and measurement functions are determined by
data associations. For instance, the short-term data associations
determine the pose estimation. The long-term data associations
determine the loop closure. Let ∆t and Γt denote the sets of
correctly and wrongly associated measurements at time t . There
exists:

zt = {zrt ∈ ∆t} ∪ {zst ∈ Γt} (6)

where r = 1, 2, . . . , |∆t | and s = 1, 2, . . . , |Γt |, |∆t | and |Γt | are
the cardinalities of the two sets. The likelihood in (4) factorizes
into:

p(Z|X ,L) =

n∏
t=1

[|∆t |∏
r=1

p(zrt |xt , lt )
|Γt |∏
s=1

p(zst |xt , lt )
]

(7)

Substituting (5) into (7) and taking the negative logarithm of both
sides of (7), the likelihoodmaximization problem turns into a non-
linear least square problem:

− log p(Z|X ,L)

=

n∑
t=1

1
2

{ |∆t |∑
r=1

[
zrt − ζt (xt , ℓt )

]T
Ξ−1

∆,t

[
zrt − ζt (xt , ℓt )

]
+

|Γt |∑
s=1

[
zst − ζt (xt , ℓt )

]T
Ξ−1

Γ ,t

[
zst − ζt (xt , ℓt )

]} (8)

where Ξ∆,t and ΞΓ ,t are the error covariance for the two cases.
The formula (8) indicates that the optimizer tries to adjust the

variables to relax the errors caused by thewrong data associations.
If the wrong errors are significant, the whole optimization would
be severely corrupted. In dynamic environments, wrong data as-
sociations are mainly caused by the moving objects. Removing
moving objects helps to eliminate the wrong square error terms in
(8), which reduces the influence on the optimizer to the minimal
level. This explains why we use motion removal as a solution to
address the problem of RGB-D SLAM in dynamic environments.
Fig. 2 shows our idea of integrating motion removal into the front
end of RGB-D SLAM. The motion removal module acts as a pre-
processing stage to filter out data that are associated with moving
objects. With incorrect data associations eliminated, the SLAM
performance can be improved.

4. The approach overview

The idea of our motion removal approach is straightforward.
Fig. 3 shows the flowchart of our approach. It consists of two
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Fig. 3. The overview of our approach. The first two rows show the last and the
current RGB and depth images. The blue and green arrows represent the procedures
carried out in the Learning and Inference processes, respectively. Note that the
two processes run simultaneously and our approach is on-line. The Foreground
Segmentation procedure runs before the Model Update procedure in each iteration.
The figure is best viewed in color.

on-line parallel processes: the Learning process that builds and
updates the foreground model; the Inference process that pixel-
wisely segments the foreground with the built model.

In the Learning process, we firstly employ a dense optical flow
algorithm to find the 2-D pixelmatchings between the two consec-
utive RGB images, which we refer to the last image and the current
image. Secondly, we estimate the 2-D homography transformation
between the two images using the dense pixelmatchings.Wewarp
the corresponding pixel coordinates in the current image with the
homography transformation. The reprojection errors are found by
subtracting the pixel coordinates in the last imagewith thewarped
ones. We generate the Reprojection Error Map from the subtraction
results, which roughly indicates the moving objects. Thirdly, we
derive the foreground likelihood pixel-wiselywith the Reprojection
Error Map. A scheme is devised to generate a Possible Foreground
Mask with the likelihood. The Possible Foreground Points is a set of
RGB-D points that are believed to be the foreground. It is found
from the last RGB-D frame with the mask. Finally, we use the RGB-
D information from the Possible Foreground Points to build and
update the foreground model.

In the Inference process, we pixel-wisely compares the current
RGB-D framewith themodel to segment the foreground. It isworth
noting that the final foreground segmentation results are not em-
ployed for the model update. This is because false segmentation

results could contaminate the model and propagate negatively in
future iterations.

In our approach, we use the codebook model [35,36] for the
foreground modeling. The codebook model is a type of non-
parametric model. We adapt the codebook learning and inference
mechanisms from [37]. To the best of our knowledge, this is the
first time that the codebook-based method has been used in the
context of dealing with the SLAM problem in dynamic environ-
ments. Note that our approach is different from the codebook-
based background subtraction algorithm [38]. Firstly, the back-
ground subtraction algorithm aims to construct a pixel-wise back-
ground model, so codebooks are built for each pixel in the im-
age. In our approach, the foreground is learned as a whole, so
we only maintain one foreground codebook model. Secondly, the
background subtraction algorithm requires that cameras remain
static during the whole process, while our approach allows free
camera motions. Lastly, we use both the RGB and the depth data in
our approach, while the background subtraction algorithmmerely
uses the RGB data. Our model contains the 4-channel RGB-D in-
formation that includes both the 3-channel RGB data and the 1-
channel depth data.

In our approach, we assume that planes are static objects, so
pixels from planes are not considered as moving objects. Planes
are predominant features inman-made environments.Many SLAM
approaches incorporate the plane information [39–43] into their
algorithms. It is natural and without loss of generality to use
this assumption. We identify the plane points with the RANSAC-
based plane segmentation algorithm [44] implemented in the
Point Cloud Library [45] with the GPU acceleration enabled. The
algorithm segments the points that lie in the largest plane in the
scene. The plane segmentation results are employed to refine the
Reprojection Error Map in the Learning process, as well as the final
foreground segmentation result in the Inference process.

5. The proposed approach

This section presents the details of the Learning and Inference
processes of our approach.

5.1. The Learning process

We have four steps in the Learning process: finding the dense
pixelmatchings, generating the reprojection errormap, finding the
possible foreground points and modeling the foreground.

5.1.1. Finding the dense pixel matchings
We use the EpicFlow [46] to find the dense pixel matchings

between two consecutive RGB images. A sample EpicFlow result is
displayed in Fig. 4. As we can see, there are different optical flow
values on the basketball and the person, including both the orien-
tations and the magnitudes. The dense pixel matchings between
the two consecutive images are found with the following formula:

ξ t−1
i = ξ t

i − v(ξ t
i ) (9)

where ξ t
i is the location of pixel i in the current image, v(·) is the

optical flow vector, ξ t−1
i is the corresponding pixel location in the

last image. All the variables are two-element vectors.

5.1.2. Generating the reprojection error map
The reprojection error map roughly indicates the moving ob-

jects. The values with large reprojection errors are likely to be the
foreground. Let π t−1

t denote the 2-D homography transformation
from the current RGB frame to the last RGB frame. The reprojection
error for the pixel matchings is expressed as:

ε(ξ t−1
i , ξ t

i ; π t−1
t ) =

ξ t−1
i − π t−1

t ξ t
i

 (10)
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Fig. 4. This figure shows the process to find the possible foreground points. The shown scenario is a person playing with a basketball in an office room. The person and the
basketball are the moving objects. Firstly, two consecutive RGB images are taken as input for the dense optical flow. The results are described in a color image, in which the
color encodes the orientation and the intensity encodes the magnitude. Secondly, the Reprojection Error Map is generated with the optical flow results. The intensity values
encode the reprojection errors. The Plane Segmentation is a binary mask in which the white pixels denote the found plane. It is used to refine the Reprojection Error Map.
Finally, the Possible Foreground Points mask that is shown in the bottom right is derived from the refined Reprojection Error Map. The Possible Foreground Points are obtained
from the mask with the last RGB-D image. The figure is best viewed in color.

Fig. 5. The 3-D view for the whole depth image and the possible foreground RGB-D points derived from Fig. 4. In order to display the depth values, they are normalized to
0–255. (a) shows the depth values for the whole image (depth increases from yellow to blue). (b) shows the 3-D surface plot of the possible foreground points with color
information. The figure is best viewed in color.

where ∥·∥ represents the 2-norm and ε(·) is a scalar. π t−1
t is

found by minimizing the following least squares all over the pixel
matchings:

π t−1
t = argmin

π

∑
i

ε(ξ t−1
i , ξ t

i ; π t−1
t ) (11)

The least square optimization is prone to be corrupted by out-
lier pixel matchings due to the relaxation for large errors. In
our approach, we use the Least-Median-of-Squares (LMedS) algo-
rithm [47] as the robust estimator. Unlike the RANSAC algorithm,
the LMedS algorithmdoes not need threshold tunings, but requires
that the ratio of outliers is below 50% [48]. Fortunately, this is true
in most cases. The number of the pixel matchings from moving

objects is usually less than the half of the total number pixel
matchings.

The algorithm randomly selects 4 pairs of pixel matchings to
compute π t−1

t , and then repeats this process for a few times. For
each trial, we compute the median reprojection error with all the
pixel matchings:

ϱk = median
i

ε(ξ t−1
i , ξ t

i ;
kπ t−1

t ), (12)

where ϱk is the median reprojection error for the kth trial. Fi-
nally, the algorithm finds the minimummedian reprojection error
among all these trials:

ϱmin = argmin
k

ϱk (13)
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The π t−1
t corresponding to ϱmin is employed for our reprojection

error map generation. As aforementioned, we assume that planes
are static and use the plane segmentation results to refine the re-
projection errormap. The pixels that belong to planes are excluded
for the reprojection error map generation.

Fig. 4 shows a sample for the depth data-based plane segmen-
tation, and the reprojection error map with its refined version.
Note that in order to display the reprojection error values, they are
normalized to 0 − 255 in the map figure.

5.1.3. Finding the possible foreground points
Let ϕt−1

i denote the likelihood of pixel i being the foreground.
We model the likelihood as:

ϕt−1
i = Lt−1

i exp
[
ε(ξ t−1

i , ξ t
i ; π t−1

t )
]

(14)

where exp(·) is an exponential function, Lt−1
i denotes the label for

pixel i from the plane segmentation results, 0 represents that the
point is from a plane, and 1 represents non-plane. The pixels with
larger reprojection errors give higher likelihoods, and hence more
likely to be the foreground.

We normalize the likelihood ϕt−1
i to 0 − 1 and let ϕ̄t−1

i denote
the normalized likelihood, which indicates the probability of a
pixel being the foreground. The mask for the possible foreground
is determined by the following formula:

I t−1
m (i) = 255 × U

[
log

ϕ̄t−1
i

1 − ϕ̄t−1
i

]
(15)

where I t−1
m (i) represents the intensity value of the mask image,

1−ϕ̄t−1
i represents the probability of a pixel being the background,

U(·) is the step function where the function value equals 1 if the
argument is equal or greater than 0, otherwise, the function value
is 0. In (15), the log(·) function compares the foreground and back-
ground probabilities. For example, if the foreground probability
is greater than the background probability, the ratio of the two
probabilities is greater than 1. Then the log(·) function gives a
positive value. Through the step function U(·), the pixel value is
assigned as 255. The bottom right sub-figure of Fig. 4 displays a
sample possible foreground mask. Note that in our experiments,
possible foreground masks are refined using erosion operations
to reduce noises at object boundaries. Fig. 5 displays the possible
foreground viewed in 3-D.

5.1.4. Modeling the foreground
We use the non-parametric codebook model in our approach.

A codebook model comprises a set of codewords. A codeword is
a type of container that clusters points with close RGB-D values.
Moreover, a codeword records the ranges of RGB-D values from the
similar points. We only maintain one foreground codebook model
in our approach. The model contains a number of codewords,
which record the RGB-D value ranges of the moving-object points.

The possible foreground points are used as the seeds for the
foreground modeling. Let Pt−1 denote the set of possible fore-
ground points at time t − 1, and C denote the codebook model.
We use the bold font to represent vectors in this section. Each
codeword has the following variables:

• ψ : the high learning boundary
• φ : the low learning boundary
• µ : the high inference boundary
• υ : the low inference boundary
• δ : the offset to create a learning boundary
• τ : the time record for the latest update

Algorithm 1: The foreground modeling algorithm
Data: Pt−1, C, ψ, φ, µ, υ, δ, τ , ϑ , ϵ, ρ

1 begin
2 for each point pi

t−1 in Pt−1 do
3 ϑ = 0;

// check if pi
t−1 fits in a codeword

4 for each codeword cj in C do
5 if pit−1 ⊡ cj then
6 ϑ = 1;

// update the codeword cj

7 if G(pit−1) ⪰ µ(cj) then
8 µ(cj) .

= G(pi
t−1) ;

9 end
10 if G(pit−1) ⪯ υ(cj) then
11 υ(cj) .

= G(pi
t−1) ;

12 end
13 if G(pit−1) ⊕ δ ⪰ ψ(cj) then
14 ψ(cj) .

= ψ(cj) ⊕ ϵ ;
15 end
16 if G(pit−1) ⊖ δ ⪯ φ(cj) then
17 φ(cj) .

= φ(cj) ⊖ ϵ ;
18 end
19 τ (cj) = t − 1 ;
20 break;
21 end
22 end

// create a new codeword c
23 if ϑ = 0 then
24 ψ(c) .

= G(pi
t−1) ⊕ δ ;

25 φ(c) .
= G(pi

t−1) ⊖ δ ;
26 µ(c) .

= G(pi
t−1) ;

27 υ(c) .
= G(pi

t−1) ;
28 τ (c) = t − 1 ;
29 end
30 end

// clear inactive codewords
31 for each codeword ci in C do
32 if t − 1 − τ (ci) > ρ then
33 delete the codeword ;
34 end
35 end
36 end

where τ is a scalar that records the time for the latest update of the
model,ψ,φ,µ,υ, δ are four-element vectors inwhich each element
corresponds to each channel in the RGB-D data. For each element,
we have:

φn ≤ υn ≤ µn ≤ ψn, n ∈ {1, 2, 3, 4} (16)

where the subscript (·)n represents the nth element for the nth
channel of the RGB-D data.

The pseudo-code for the foreground modeling is shown in Al-
gorithm 1. The flag ϑ indicates whether there is a codeword from
C to accommodate a tested point. The scalar ρ is a threshold to
determinewhether the codeword is inactive. For each point pi

t−1 in
Pt−1, we check if the point can be accommodated by a codeword in
the codebookmodel.We use the symbol⊡ to represent the accom-
modation. pi

t−1 ⊡ cj is established when the following condition is
met for all the channels:

φn ≤ Gn(pi
t−1) ≤ ψn (17)
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Fig. 6. Plot of the 4-channel RGB-D data from a number of possible foreground
points. The depth values are normalized to 0–255. The vertical axis shows the pixel
values. The figure is best viewed in color.

where cj is a codeword in C, Gn(·) extracts the nth channel value
from a point. If pi

t−1 ⊡ cj is established, we set the flag ϑ to 1 and
update the codeword.

Let the function G(·) denote the set of Gn(·), which generates
a four-element vector by extracting the 4 channel values from a

point. We compare the point values with the boundary variables
channel-by-channel. The symbols ⪰, ⪯, ⊕, ⊖, .

= represent the
element-wise operations for greater-than, less-than, addition,minus
and assignment.

In Algorithm 1, the statements 7-9 check each channel with the
condition:

Gn(pi
t−1) ≥ µn(cj) (18)

If a channel value of the point is greater than the corresponding
channel value of the boundary variable µ(cj), the channel value
µn(cj) is updated using:

µn(cj) := Gn(pi
t−1) (19)

where := is the symbol for scalar assignment. Similarly, we check
and update the low boundary υ(cj) for each channel. The state-
ments 7-12 stretch the inference boundaries µ and υ to the max-
imum and the minimum values in the accommodated points. The
statements 13-18 slowly adjust the current learning boundaries if
the conditions are met. ϵ is a constant vector with 4 positive-value
elements.

If there is no codeword that can accommodate the point pi
t−1,

we create a new codeword c. Each channel value of the point is
employed as a seed to generate the boundary values.

ψn(c) := Gn(pi
t−1) + δn

φn(c) := Gn(pi
t−1) − δn

µn(c) := Gn(pi
t−1)

υn(c) := Gn(pi
t−1)

(20)

Fig. 7. This figure demonstrates examples for themodel update and themotion segmentation. The shown scenario is a person playingwith a basketball in an office room. The
person and the basketball are the moving objects. The blue and green arrows schematically indicate the directions of the data flows in the Learning and Inference processes,
respectively. Only the key data in the processes are shown in this figure. The 1st row shows the RGB images, which are displayed in chronological order from left to right. The
2nd row shows the corresponding optical flow results computed from two consecutive images. The 3rd row shows the generated mask images for the possible foreground
points. The possible foreground points are masked from the mask images and taken as input to update the foreground codebook model. The bottom row demonstrates two
examples for the motion segmentation. The input is a pair of registered RGB and depth images, and the output is the foreground mask. The timestamps of the two RGB-D
frames are later than those in the 1st row. Because our codebook model is able to accumulate information, we can segment the moving objects correctly even though some
motion cues for the model update are not sufficient. The figure is best viewed in color.
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Algorithm 2: The foreground Segmentation algorithm
Data: P t , C, λ

1 for each point pi
t in P t do

2 L(pi
t ) = 0 ;

// check if pi
t fits in a codeword

3 for each codeword cj in C do
4 if pit ⊙ cj then
5 L(pi

t ) = 1 ;
6 break ;
7 end
8 end
9 end

The statements 24-27 implement (20) channel-by-channel. The
inference boundariesµ(c) and υ(c) are gradually expanded as new
points are accommodated during the model update. The variable δ
is a constant vector with 4 positive-value elements.

We delete inactive codewords from the codebook model when
we finished the model update in each iteration. A codeword is
identified as inactive when the following condition is satisfied:

t − 1 − τ (ci) > ρ (21)

where ci is the examined codeword, t−1 is the time index because
we are checking the last frame. The clearance for inactive code-
words is able to eliminate moving objects that have disappeared
for a certain period of time.

Fig. 6 plots the 4-channel RGB-D data from a number of possible
foreground points. Assume that we build and update a codebook
model using this sequence of points.We start from the initial point
at the index 0. Undoubtedly, the initial point seeds a codeword
because there is no codeword existing before. Let we set the values
of each channel of δ to 10. Obviously, the point No. 58 cannot fit
in this codeword, so it seeds a new codeword. This new codeword
will accommodate the point No. 126 due to the close RGB-D values.
Thus, the point No. 126 will not seed a new codeword.

5.2. The Inference process

In the Inference process, the foreground is segmented using the
codebook model C. Let P t denote the point set of the whole frame
at time t , and L(pi

t ) denote the binary label for a point pi
t , where

L(pi
t ) = 0 denotes the background and L(pi

t ) = 1 denotes the
foreground. The segmentation problem is to determine the label
for each point.

The foreground segmentation algorithm is shown in Algorithm
2. We use the symbol ⊙ to represent that the point pi

t can be
covered by a codeword cj. If pi

t ⊙ cj is true, the point is recognized
as a foreground point. We introduce a tolerance variable λ to
adjust the determination, which is a four-element vector. pi

t ⊙ cj
is established when the following condition is satisfied for all the
channels:

υn − λn ≤ Gn(pi
t ) ≤ µn + λn (22)

If λn is positive, the segmentation is loosened and more points are
classified as foreground. Otherwise, the segmentation is tightened
up and less points are classified as foreground.

As aforementioned, we use the plane segmentation results to
refine the foreground segmentation. Let Lp(P t ) denote the plane
segmentation results, where 0 represents a plane point and 1
otherwise. The refined foreground segmentation Lr (P t ) is obtained
point-wisely by:

Lr (P t ) = L(P t ) ∩ Lp(P t ) (23)

Table 1
The characteristics of the tested sequences. Low dynamic sequences are denoted
with a superscript star. Others are high-dynamic sequences. Due to the absence of
the ground truth for the fr2/d/person/v sequence, the speed is not calculated.

Sequences Duration s Trans. speed m/s Rot. speed deg/s

fr3/w/half 35.90 0.2229 18.3213
fr3/w/rpy 30.64 0.0912 21.0986
fr3/w/static 24.93 0.0119 1.3983
fr3/w/xyz 28.82 0.2083 5.5099
fr3/w/half/v 41.22 0.2617 8.5957
fr3/w/rpy/v 27.29 0.0550 18.7280
fr3/w/static/v 27.41 0.0116 1.4223
fr3/w/xyz/v 31.16 0.2208 4.9529
fr3/s/half∗ 37.29 0.1807 19.1091
fr3/s/xyz∗ 42.56 0.1322 3.5860
fr2/d/person∗ 141.64 0.1262 5.4669
fr2/d/person/v∗ 135.13 – –

Table 2
The codebook parameters used in our experiments. The parameters δ and λ have
4-channel values for R, G, B and D. The parameter ρ is a scalar.

Parameters δ λ ρ

R G B D R G B D

Values 10 10 10 5 5 5 5 10 10

where ∩ represents the AND logic operation. (23) indicates that
only the non-plane points are considered as the foreground.

Fig. 7 shows some examples for the model update and the
foreground segmentation. As we can see, the mask images for the
possible foreground may not cover the whole moving objects at
some frames, for instance, the 5th mask image only cover the bas-
ketball. Themotion cues here is not sufficient for themodel update.
However, we updates the foreground model incrementally, so the
model is able to accumulate information from previous frames.
Thus, we can see that our approach is able to correctly segment
the whole foreground although the motion cues are not sufficient
at some frames.

6. Experimental results and discussions

6.1. Experiment setup

We performed the experiments using the public TUM RGB-D
dataset. In the TUM dataset, the Dynamic Objects sequences are
designed to evaluate SLAM algorithms in dynamic environments.
Among the sequences, the desk_with_person and the sitting
sequences depict low-dynamic scenarios, while the walking se-
quences depict high-dynamic scenarios [31]. Note that there is no
moving object in the preceding section of the desk_with_person
sequences. This part could be considered as recorded in a static
environment. The characteristics of the selected sequences in this
paper are listed in Table 1. The words fr, w, s, d, half, v stand
for freiburg, walking, sitting, desk, halfsphere, valida-
tion, respectively. All the imageswere processed at the 640× 480
resolution in our algorithms. The algorithms run on a desktop PC
with 3.6 GHz Intel Core i7 CPU and 16 GB RAM.

We left the parameters in the open-source implementation of
EpicFlow [49] unchanged. The parameters of our motion removal
approach used in the experiments are listed in Table 2. Note that
these parameters were chosen empirically and we found that the
tuning of these parameters does not influence the motion removal
performance dramatically.

In our approach, we use DVO SLAM [7] as the SLAM system.
We integrated our motion removal approach into the front end
of the DVO SLAM. Our approach acts as a pre-processing stage to
filter out the data that were associated with moving objects. We
evaluated the original DVO SLAM system and the integrated SLAM
system, respectively. The performance improvements brought by
our motion removal approach were quantitatively demonstrated.
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Table 3
ATE in meters for the results without and with our motion removal approach. Low-dynamic sequences are denoted with a superscript star. Others are high-dynamic
sequences. The results demonstrate that our approach greatly reduces the absolute trajectory error over all the high-dynamic sequences.

Sequences Without our approach With our approach Improvements

RMSE Mean Median S.D. RMSE Mean Median S.D. RMSE Mean Median S.D.

fr3/w/half 0.5287 0.4780 0.4018 0.2260 0.0668 0.0613 0.0585 0.0266 87.37% 87.18% 85.44% 88.23%
fr3/w/rpy 0.7304 0.6730 0.6649 0.2837 0.0729 0.0647 0.0581 0.0335 90.02% 90.39% 91.26% 88.19%
fr3/w/static 0.2120 0.1628 0.1134 0.1358 0.0334 0.0263 0.0191 0.0207 84.25% 83.85% 83.16% 84.76%
fr3/w/xyz 0.5966 0.5334 0.4508 0.2672 0.0657 0.0554 0.0453 0.0354 88.99% 89.61% 89.95% 86.75%
fr3/w/half/v 0.3735 0.3142 0.2305 0.2019 0.1341 0.1047 0.0857 0.0838 64.10% 66.68% 62.82% 58.49%
fr3/w/rpy/v 0.9115 0.8740 0.8677 0.2588 0.1195 0.0896 0.0764 0.0791 86.89% 89.75% 91.20% 69.44%
fr3/w/static/v 0.2016 0.1365 0.0785 0.1485 0.0197 0.0182 0.0167 0.0075 90.23% 86.67% 78.73% 94.95%
fr3/w/xyz/v 0.8778 0.7102 0.5067 0.5158 0.0597 0.0528 0.0496 0.0279 93.20% 92.57% 90.21% 94.59%
fr3/s/half∗ 0.0616 0.0524 0.0431 0.0324 0.0664 0.0540 0.0392 0.0386 −7.83% −3.21% 9.11% −19.01%
fr3/s/xyz∗ 0.0505 0.0393 0.0336 0.0317 0.0514 0.0431 0.0373 0.0280 −1.80% −9.80% −11.12% 11.81%
fr2/d/person∗ 0.0853 0.0834 0.0868 0.0180 0.0759 0.0692 0.0717 0.0313 11.00% 17.05% 17.44% −73.96%
fr2/d/person/v∗ 0.1468 0.1305 0.1170 0.0672 0.1202 0.1075 0.1025 0.0538 18.11% 17.64% 12.44% 19.90%

Table 4
Translational drift (RPE) in m/s for the results without and with our motion removal approach. Low-dynamic sequences are denoted with a superscript star. Others are
high-dynamic sequences. The results demonstrate that our approach is able to reduce the translational drift over all the high-dynamic sequences.

Sequences Without our approach With our approach Improvements

RMSE Mean Median S.D. RMSE Mean Median S.D. RMSE Mean Median S.D.

fr3/w/half 0.3284 0.2074 0.0832 0.2546 0.0611 0.0550 0.0514 0.0268 81.38% 73.50% 38.15% 89.49%
fr3/w/rpy 0.4644 0.3357 0.2175 0.3210 0.0968 0.0823 0.0681 0.0510 79.15% 75.48% 68.68% 84.11%
fr3/w/static 0.2451 0.1277 0.0231 0.2093 0.0307 0.0229 0.0162 0.0205 87.47% 82.10% 29.68% 90.19%
fr3/w/xyz 0.4019 0.2801 0.1640 0.2882 0.0668 0.0557 0.0455 0.0369 83.37% 80.11% 72.28% 87.18%
fr3/w/half/v 0.2682 0.1529 0.0532 0.2203 0.1043 0.0778 0.0505 0.0694 61.12% 49.12% 5.06% 68.49%
fr3/w/rpy/v 0.3907 0.2303 0.0909 0.3156 0.1692 0.1050 0.0598 0.1327 56.68% 54.40% 34.20% 57.95%
fr3/w/static/v 0.1853 0.0955 0.0311 0.1589 0.0228 0.0194 0.0172 0.0119 87.71% 79.68% 44.62% 92.49%
fr3/w/xyz/v 0.4614 0.2624 0.0527 0.3795 0.0567 0.0485 0.0399 0.0293 87.72% 81.53% 24.24% 92.27%
fr3/s/half∗ 0.0466 0.0346 0.0235 0.0312 0.0547 0.0444 0.0347 0.0318 −17.29% −28.34% −47.35% −2.05%
fr3/s/xyz∗ 0.0360 0.0245 0.0165 0.0264 0.0357 0.0276 0.0218 0.0225 1.06% −12.87% −31.94% 14.78%
fr2/d/person∗ 0.0147 0.0116 0.0097 0.0091 0.0213 0.0150 0.0117 0.0151 −44.29% −29.94% −20.60% −64.65%
fr2/d/person/v∗ 0.0171 0.0145 0.0127 0.0090 0.0165 0.0141 0.0122 0.0085 3.53% 2.90% 4.25% 5.17%

Table 5
Rotational drift (RPE) in deg/s for the results without and with our motion removal approach. Low-dynamic sequences are denoted with a superscript star. Others are high-
dynamic sequences. The results demonstrate that our approach is able to reduce the rotational drift over all the high-dynamic sequences.

Sequences Without our approach With our approach Improvements

RMSE Mean Median S.D. RMSE Mean Median S.D. RMSE Mean Median S.D.

fr3/w/half 6.6125 4.2811 2.3583 5.0395 1.9004 1.7405 1.7156 0.7629 71.26% 59.34% 27.25% 84.86%
fr3/w/rpy 9.0292 6.7447 4.3548 6.0029 2.5936 2.2320 1.9845 1.3210 71.28% 66.91% 54.43% 77.99%
fr3/w/static 4.2761 2.2631 0.5148 3.6282 0.8998 0.6253 0.3908 0.6470 78.96% 72.37% 24.08% 82.17%
fr3/w/xyz 8.6593 5.5484 3.4288 6.6483 1.5950 1.3660 1.1754 0.8236 81.58% 75.38% 65.72% 87.61%
fr3/w/half/v 5.4066 3.4424 1.5721 4.1692 2.6987 2.0379 1.4747 1.7692 50.09% 40.80% 6.20% 57.56%
fr3/w/rpy/v 6.7382 4.2855 2.1695 5.1998 3.0329 2.3219 1.6276 1.9512 54.99% 45.82% 24.98% 62.47%
fr3/w/static/v 3.2292 1.7556 0.5812 2.7103 0.6447 0.5017 0.3955 0.4050 80.03% 71.42% 31.96% 85.06%
fr3/w/xyz/v 8.7977 5.2338 1.4675 7.0716 1.6194 1.4211 1.2838 0.7766 81.59% 72.85% 12.52% 89.02%
fr3/s/half∗ 2.4747 1.8168 1.1745 1.6802 2.2677 1.7948 1.2656 1.3861 8.36% 1.21% −7.76% 17.51%
fr3/s/xyz∗ 0.9956 0.8114 0.6836 0.5769 1.0362 0.8903 0.7904 0.5302 −4.08% −9.72% −15.61% 8.09%
fr2/d/person∗ 0.5986 0.4994 0.4384 0.3300 0.7744 0.6102 0.5005 0.4767 −29.37% −22.20% −14.17% −44.45%
fr2/d/person/v∗ 0.6271 0.5406 0.4718 0.3179 0.6501 0.5555 0.4736 0.3376 −3.65% −2.76% −0.38% −6.19%

6.2. Evaluation of our approach

We employed the widely used metrics Absolute Trajectory Er-
ror (ATE) and Relative Pose Error (RPE) for the quantitative eval-
uations [15]. The RPE contains both the translational drift error
and the rotational drift error. In Tables 3–5, the columns Without
Our Approach show the results produced by the original DVO
SLAM system. The columns With Our Approach show the results
produced by the integrated SLAM system. We present the values
of Root Mean Square Error (RMSE), Mean Error, Median Error and
Standard Deviation (S.D.) in this paper. The improvements brought
by our approach are calculated using the following formula:

𭟋 = (1 −
β

α
) × 100% (24)

where𭟋 represents the improvement value,α represents the value
obtained without our approach, β represents the value obtained

with our approach. We highlight the RMSE values in the tables,
because they are prone to be influenced by large or occasional
errors [50]. They can better indicate the robustness of the SLAM
system compared to the mean and median values. We also high-
light the S.D. values, because they indicate the stability of the
system.

According to Tables 3–5, the average RMSE improvement values
for the ATE, translational drift and rotational drift in the high-
dynamic sequences are 85.63%, 78.08% and 71.22%, respectively.
This demonstrates that our approach greatly improves the DVO
SLAM system in these high-dynamic scenarios. Moreover, the ta-
bles indicate that our approach gives better improvements in the
static and xyz sequences, and inferior improvements in the
half and rpy sequences. As indicated from Table 1, the camera
speed of the half and rpy sequences is generally larger than that
of thestatic andxyz sequences.We find that our approach could
be degraded by the fast camera motions. In the Learning process,
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Fig. 8. The selected motion removal results provided by our approach. The sub-figures of the first and the third rows are the figures from the TUM walking sequences and
our sequences. The mask images show the motion removal results. The figure clearly indicates that our motion removal approach is able to effectively remove the moving
objects in various challenging scenarios.

fast camera motions appear to cause large parallax between con-
secutive images, which may degrade the optical flow estimation.
As we use the optical flow results to determine the dense pixel
matchings, the large parallax could result in less accurate pixel
matchings, with which the homography estimation could be de-
graded and the reprojection errors would become inaccurate. The
inaccurate reprojection errors would lead to incorrect foreground
likelihood, and hence false possible foreground points could be
generated. With these false points, the foreground model may be
contaminated through the model update. Finally, in the Inference
process, the false foreground segmentation could be produced by
using the incorrect foreground model. Thus, in order to get better
results, we require that the parallax between consecutive frames
is small. We consider it as a limitation of our approach.

From Tables 3–5, we find that our approach gives less improve-
ments in the low-dynamic sequences. We think the reason is that
the low-dynamic motions could be easily identified as outliers, so
that they can be eliminated from computing the camera poses in
the DVO SLAM algorithm. Moreover, as the low-dynamic moving
objects do not move from place to place, they can hardly hinder
the loop closure detection. Thus, the low-dynamic motions could
not significantly degrade the SLAM process. The DVO SLAM system
can work well and produce relative good results, which leaves

very limited space for our improvement. From the tables, we also
find that our approach gives negative results in some low-dynamic
sequences. We believe the reason is that the reprojection errors
from the static and moving objects do not differ notably in these
cases. The static objects may be wrongly identified as the possible
foreground points, which contaminates the foreground model and
lead to false foreground segmentation results.

We record two personswalking and playingwith a basketball in
an office room using a hand-held Asus Xtion Pro Live camera. Fig. 8
qualitatively displays the selected motion removal results using
both the TUM walking sequences and our sequences. The results
indicate that our motion removal approach is able to effectively
remove the moving objects in various challenging scenarios, such
as the results shown in Fig. 8b, e and f. However, there are still some
incorrectly labeled pixels. For instance, in Fig. 8hwhere the camera
is almost turning upside down, some false negatives appear at the
hand of the right person.We find that the camera overexposures at
these pixels, so the color of these pixels cannot be accommodated
by the built foreground model. False negatives also appear at the
foot of the left person.We think the reason is that the foot is too far
away from the main body. Thus, no codeword can cover the depth
information of the points at this area. Similar false negatives can be
found in Fig. 8c. The RGB and depth values of the points at the hand
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Fig. 9. The comparison between different methods. Experiments were performed using the TUM walking sequences. The sub-figures (a), (b) and (c) show the ATE results,
the translational drift results, and the rotational drift results, respectively. The vertical axis of each sub-figure is ticked in the logarithm scale. The results presented in the
error bars are RMSE values with standard deviations. Small values correspond to better performance. The optimal performance of our proposed approach is clearly revealed
by the comparison. This figure is best viewed in color.

of the right person is far away from the main body so that these
pixels are misclassified as background. There are also some false
positives, for instance, the pixels at the book and desk in Fig. 8a and
b.We believe that these false positives are caused by the close RGB
and depth values between the foreground and the background. In
Fig. 8g, we find that there are some salt-and-pepper noises. We
think these are caused by the depth measurement noises from the
RGB-D camera.

6.3. Method comparison

We implemented two variants of our approach: one merely us-
ing the 3-channel RGB data, and the other one merely using the 1-
channel depth data. The two variants are named as CBT (CodeBook
Three channel) and CBO (CodeBook One channel), respectively.
We compare both of them with our approach in this section. To
ensure a fair comparison, we use the same set of parameters listed
in Table 2 for both the two variants. The CBT and CBO approaches
are identical to our approach except howmany channels are used.

Scene flow is able to infer motions in the 3-D Euclidean space
[51]. Herbst et al. [52] developed a dense motion segmentation
method with the proposed dense RGB-D scene flow algorithm.We
implemented this motion removal method by replacing the scene
flow algorithmwith PD-flow [53], which is a real-time RGB-D flow
algorithm. The method is named as PDM (PD-flow-based Motion
removal) and compared with our approach. According to [52],
motions are indicated by the RANSAC outliers of the point corre-
spondences associated by the scene flow field between consecutive
RGB-D frames. In this paper, we used the open-source RANSAC-
based point correspondence rejector in the Point Cloud Library to
determine the outliers.

Note that all these motion removal methods were integrated
with the DVO SLAM system individually. What we compare are
the integrated DVO SLAM systems. They are evaluated using the
TUM walking sequences with the ATE and RPE metrics. Smaller
errors correspond to better performance. We also compare all the
integrated SLAM systems with our most similar work [31], which
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employs a motion Detection, Tracking and Segmentation (DTS)
framework.

Fig. 9 displays the comparison results. Note that the word
DVO denotes the results obtained with the original DVO SLAM
system. The comparison results show that our approach ensures
the smallest ATE and RPE values across almost all the sequences,
which clearly demonstrates that our approach gives the best per-
formance. Among all the other methods, CBO gives the closest
performance to ours inmost sequences. However, the performance
of CBT is not satisfied, especially in the sequences with fast camera
motions. This indicates that the depth information contributes
significantly in our approach and combining both the RGB and
depth information is a benefit here. The DTS method can also give
satisfied performance. It is better than CBT in most sequences. We
think this is because the DTS method uses both the RGB and the
depth information while CBT just uses the RGB information.

We also find that the PDM method degrades the SLAM and
visual odometry performance in most cases. The reason is that
the PDM method could not correctly segment moving objects.
Many false detected motions come from the object boundaries
and distant objects. The point correspondences become less ac-
curate due to the unstable depth measurements at these areas.
These imprecise point correspondences dominate the outliers of
the RANSAC output and become the false motion removal results
that finally degrade the SLAM performance. This also confirms that
just using robust estimators, such as the RANSAC algorithm, to
reject outliers in 3-D registration is not sufficient. Development of
effective motion removal methods is necessary to solve the RGB-D
SLAM problem in dynamic environments.

7. Conclusions

We proposed here a novel RGB-D data-based motion removal
approach to address the problem of RGB-D SLAM in dynamic envi-
ronments. Our approach requires no prior-known moving-object
information, such as semantics or visual appearance. It is an on-
line method and relies solely on the information obtained until
the current frame. No future information or batch data processing
is required. In addition, the on-line learning capability allows our
approach accumulating the foreground information incrementally
and updating the foregroundmodel timely. Extensive experiments
were performed using the public TUM RGB-D dataset. The results
indicated that our approach was able to improve the RGB-D SLAM
performance in various challenging environments, especially in
the high-dynamic scenarios. The comparison results demonstrated
that our approach achieved the best performance among all the
methods.

However, our approach still presents several limitations. Firstly,
we require small parallaxes between consecutive frames. The rea-
son is that the optical flow estimation could be degraded by the
large parallax. With the degraded optical flow, reprojection would
become erroneous and the foreground model could be contami-
nated. Then, false foreground segmentation would be generated.
In the future, we plan to use an RGB-D camera with a higher
frame rate to alleviate this problem. Secondly, we assume that
static objects dominate the scene. In particular, the ratio of the
outlier pixel matchings should not exceed 50%. This is required
by the LMedS robust estimator that is employed to optimize the
homography estimation. The algorithm would be confused to dis-
criminate the inliers against the outliers if the ratio is more than
50%. For instance, the algorithm would fail in the scenarios that
more than half of the pixels come from moving objects. Thirdly,
our approachmaydegrade the performance of RGB-DSLAM in low-
dynamic environments. This is because there may be not sufficient
differences between the reprojection errors from the static objects
and the dynamic objects. Thus, static objects may be identified

as the possible foreground and used to update the foreground
model. Lastly, our approach cannot run real-timely at the current
status. The most time-consuming process is the dense optical flow
estimation, which takes around 7 s per frame, while the core
operations in our algorithm just take around 1 s per frame. In the
future,wewill try fast dense optical flow algorithms and accelerate
the approach with FPGA devices.
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