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Abstract— Mapping with sonar sensor is highly interesting
yet to be solved, due to the low-cost and high uncertainty of
the sensor. A novel method for iterative probabilistic occupancy
grid mapping using gradient ascent is introduced. The algo-
rithm is based on the forward sensor model for sonar sensors.
The experiments demonstrate that such method is capable of
creating satisfying maps for a mobile robot in real time. It
is rather robust to sensor noise and model errors and it can
overcome the problem of sensor conflicts produced by some
existing methods. We propose an efficient way of iterative
mapping for mobile robots.

I. INTRODUCTION

Sonar-based mapping is one of the most well-documented
and inexpensive methods for mapping for mobile robots.
It is usually considered to be cheaper than laser scanners
and computationally more efficient than cameras [1]. Sonar
sensors are also deployed on autonomous vehicles to perform
obstacle detection or close range mapping.

There are several ways to represent data obtained from
sonar sensors. Many researchers draw an analogy between
sonar sensors and laser scanners and propose some feature-
based algorithms [2], [3]. This paradigm has the potential
of producing maps with high accuracy especially in corner
points, given the Field of View (FOV) of a sensor is
relatively narrow. However, many engineers and researchers
would deploy sonar sensors with large FOVs to fully cover
areas around an autonomous vehicle with less sensors [4].
Handling this type of sonar sensors is not a trivial task
because they are much less informative than laser scanners.
While each measurement of a laser scanner, with negligibly
narrow FOV, can show the position of an obstacle with little
uncertainty, a measurement from sonar sensor just indicates
that there are some obstacles in FOV at some distances from
the sensor. As a result, it becomes sometimes necessary to
directly handle uncertainty in sonar sensor measurements.

Within the framework of probabilistic methods, one of
the most commonly adopted representations of occupancy
maps is occupancy grid, where each grid cell represents a
continuous value between 0 and 1 indicating the probability
of certain cells contain obstacles. One of the most widely
appreciated algorithms under such representation is mapping
via the inverse sensor model [5].
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The log-odd update algorithm does not consider the scene
where more than one obstacle is presented in the FOV of a
sensor. [6] proposes a recursive, fast algorithm to obtain a
more comprehensive the inverse sensor model, but the author
has pointed out that information loss when using the inverse
sensor model would make the output inaccurate.

Besides, some researchers have pointed out that mapping
with backward model suffers from the problem of sensor
conflicts [7]. This flaw stems from the fact that the origi-
nal algorithm does not consider the dependencies between
different grid cells and much more information is lost in
the inverse sensor model. Thrun proposed a probabilistic
mapping algorithm based on a much more elaborate forward
sensing model [8]. The algorithm adopts an expectation-
maximization (EM) scheme. It overcomes the problem of
sensor conflicts in original mapping methods but the op-
timization of the forward sensor model is conducted by
flipping individual cells and making expectation inferences
to see if the expectation increases, like an inefficient greedy
search. As a result, this algorithm cannot perform mapping
in real time.

Another method proposed in [6] abandons the probabilis-
tic representation and apply gradient descent to iteratively
optimize the customized cost functions. It manages to con-
struct maps with satisfying accuracy and runs in real time.
However, it does not consider the case of multiple obsta-
cles comprehensively and many manually tuned regularizing
tricks are required to produce a satisfying performance.

Therefore, this paper presents a computationally efficient
solution to close range mapping assuming robot poses are
known. The adopted sensor model has the potential of
dealing with multiple obstacles at various distances. The
update algorithm is based on gradient ascent and can be
implemented recursively. This method could also produce
more accurate maps than traditional methods.

The paper will first introduce some relevant contributions
from other researchers. Then the sensor model and the update
algorithms will be described analytically and comprehen-
sively. Finally, we will present some simulation experiments
and discussions on the algorithm.

II. PRELIMINARIES

A. Problems with Mapping via Log-odd Ratio

As pointed out by [7], [9], sensor conflicts are not only
raised from errors in sensor readings but they sometimes
also occurs in occasions where FOV of two sensors overlap.
The phenomenon can be well illustrated in Figure 1 with a
doorway example.



Fig. 1: Sensor conflicts when a robot moves pass a doorway.

When conducting mapping via the inverse sensor model,
the update equation of each cell is derived as

`tx,y = log
p(mx,y)|zt

1− p(mx,y|zt)
+ log

1− p(mx,y)

p(mx,y)
+ `t−1x,y (1)

where p(mx,y) is the prior estimation of the occupancy value
of a cell in (x, y).

In the scene shown in fig. 1, since the sonar pulse from
the mobile robot could be blocked by the wall more often
than passing through the narrow doorway. The output map
of such method tends to lose the information of the doorway
by overlooking the unblocked measurements.

This problem has also been discussed in [10]. The author
suggests reducing the weights of similar readings from
similar locations, which is indeed a significant improvement
for the inverse sensor model. However, the output occupancy
map at such regions is still largely determined by the
parameters hand-crafted before the experiments thus these
methods do not robustly solve the key problems of mapping
with a backward model.

B. Forward Sensor Model with Deterministic Map

Intuitively, a forward probabilistic snesor model depicts
the likelihood of a sensor measurement given occupancy
maps and the pose of the robot.
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Fig. 2: The probabilistic distribution of P (zkt |m, x). Picture
shows cases where there are two obstacles. The horizontal
axis represents the reading of a sensor in meter while the
vertical axis the probabilistic density.

A forward model can be written generally in the form

p(zkt |m, x) (2)

where zkt is the reading of the k th sensor at time t, m is the
occupancy grid map and x the pose of the robot. Our sensor
model consists of two basic components [1]:

1) The hit case. Each cell in the cone of a sensor has a
possibility pkhit,(x,y) of reflecting a sonar beam if the
cell is occupied. pkhit,(x,y) varies in each cell because
of the relative distances and angles from corresponding
sensors to the point (x, y) and can be predetermined by
experiments. If an occupied cell reflects a sonar beam,
the reading of this sensors will further be distorted
by Gaussian noise. Thus, the probability density of a
measurement zkt given the fact that the measurement is
induced by an object with a distance d away is modeled

to be proportional to e−
(zkt −d)2

2σ2 .
2) The un-hit case. There will be cases when there are no

occupied cells in the area covered by a sonar sensor or
none of the cells reflects a sonar beam well received
by the sensor. The reading of this sensor would simply
be zmax.

A typical probabilistic density distribution with two occu-
pied cells in a cone is shown in Figure 2.

III. METHOD

The problem of mapping with forward sensor model can
be presented as a maximum likelihood estimation (MLE)
problem, where we try to find the corresponding map that
could maximize the posterior probability of the measure-
ment.

In general, at each time steps, the target is to find a map
m that satisfies

m = argmax
m̂t

P (m̂t|Z1:t, X1:t) (3)

where m̂t is the map we estimated at time t with continuous
value in each grid cells, Z1:t and X1:t are the measurements
and robotic poses at each time steps.

The optimization process adopts the expectation-
maximization (EM) scheme. P (m̂t|Z1:t, X1:t) will be
estimated first, and gradient ascent is performed afterwards.
The update part will be implemented using gradient
ascent. This section would introduce the assumptions and
mathematical details to implement the algorithm.

A. Assumptions

There are three major and non-trivial assumptions made
to simplify this optimization-based mapping problem.

1) All information from past measurements Z1:(t−1) and
past robot poses X1:(t−1) are integrated into a esti-
mated grid map with continuous value ˆmt−1. This
first-order markov assumption is a shortcut to an
iterative representation. This assumption can be sum-
marized as

P (m̂t|Z1:t, X1:t) = P (m̂t|Zt, Xt, m̂t:1) (4)



2) The measurements taken from time t (Zt) is indepen-
dent of ˆmt−1 given m̂t. The map constructed at time
t alone should be enough to account for the measure-
ments taken then. Such assumption is expressed as

P (Zt|m̂t, ˆmt−1) = P (Zt|m̂t) (5)

where the pose of the robot is neglected for simplicity.
3) The output of the k th sensors at time t, denoted as

zkt , is independent of the outputs from other sensors
given the estimated map m̂t, which means

P (Zt|m̂t) = P (z1t , ..., z
K
t |m̂t) =

K∏
k=0

P (zkt |m̂t) (6)

where K denotes the number of sonar sensors mounted
on the robot.

B. Expectation for Measurement

This subsection we try to estimate P (m̂t|Z1−t, X1−t).
Equation (4) transforms it into P (m̂t|Zt, ˆmt−1) where pose
of the robot is neglected for simplicity.

According to Bayes’ Rule, we have

P (m̂t|Zt, ˆmt−1) =
P (Zt|m̂t, ˆmt−1)P (m̂t| ˆmt−1)

P (Zt| ˆmt−1)
(7)

and it is worth noting that
1) P (Zt| ˆmt−1) is constant with respect to m̂t so it is

reasonable to substitute it with a constant.
2) It would be difficult and not necessary to analytically

calculate the term P (m̂t| ˆmt−1), but such term implies
that, at each iteration, maps m̂t should not change a lot.
To keep the map from getting abrupt changes, ˆmt−1
would be the starting point of out gradient ascent at
time t and the gradient would be clipped from getting
too large.

3) P (Zt|m̂t, ˆmt−1) is relevant to the forward sensor
model and will be analysed in details below.

From (5),(6) we obtain

P (Zt|m̂t, ˆmt−1) =

K∏
k=0

P (zkt |m̂t) (8)

P (zkt |m̂t) refers to the forward sensor model of the k th
sonar sensor on the mobile robot.

Let kN be the number of points covered by the k th sonar
sensor. These points are sorted based on their likelihood
to reflect a sonar beam pkhit,(xi,yi) as stated in section II
and i is the index of these sorted points. Furthermore, let
dk(xi,yi) denotes the distance from point (xi, yi) to the k th
sensor. rk(xi,yi) denotes the probability of point (xi, yi) being
occupied that can be retrieved from m̂.

The probability of a sonar beam is reflected on the i th
point in the list, P (hit, i|m̂t), can be calculated by

P (unhit, i|m̂t) =

{
1 i = 1∏i−1
`=1(1− rkx`,y` × p

k
hit,(x`,y`)

) i > 1
(9)

P (hit, i|m̂t) = P (unhit, i|m̂t)× rkxi,yi × p
k
hit,(xi,yi)

(10)

where P (unhit, i|m̂t) denotes the probability that all points
before the i th point are not significantly reflecting a sonar
beam.

The probability of the k th sensor not detecting any
obstacles is estimated by

P (zkt , free|m̂t) =

{
0 zkt ! = zmax

P (unhit, kN + 1|m̂t) zkt = zmax
(11)

According to the forward sensor model described in sec-
tion II, the complete forward sensor model should be the
integration of the hit case and the un-hit case.

The analysis above yields

P (zkt |m̂t) = ηk

kN∑
j=1

P (hit, j|m̂t)×e−
(zkt −dj)

2

2δ2 +P (zkt , free|m̂t)

(12)
Equation (9 - 12) is sufficient to perform the calculation
of P (zkt |m̂t) under the assumptions made in this paper. ηk
denotes the coefficients of Gaussian distribution ηk = 1√

2πδ2
.

To give a brief summary, equation (12) suggests that
we iterate through all grid cells covered by a sonar sen-
sor, calculate the likelihood of each grid cell inducing the
measurements and obtain the expected likelihood of this
measurement given the current map.

C. Calculating the gradient

The major difficulty of calculating the gradient lies in the
fact that each grid cells will affect the calculation of the
points behind it.
Equation (13 - 15) gradually decompose the gradient into
basic blocks calculated in the forward sensor model.

∂P (zkt |m̂t)

∂rkxi,yi
=

kN∑
j=i

∂P (hit, j|m̂t)

∂rkxi,yi
ηjk+

∂P (zkt , free|m̂t)

∂rkxi,yi

ηjk = ηk × e−
(zkt −dj)

2

2δ2 (13)

∂P (hit, j|m̂t)

∂rkxi,yi
=P (unhit, i|m̂t)× pkhit,(xi,yi) j = i

P (hit, j|m̂t)×
−pkhit,(xi,yi)

1−pk
hit,(xi,yi)

rkxi,yi
j > i

(14)

∂P (zkt , free|m̂t)

∂rkxi,yi
=0 zkt < zmax

P (unhit, kN + 1|m̂t)×
−pkhit,(xi,yi)

1−pk
hit,(xi,yi)

rkxi,yi
zkt = zmax

(15)

Moreover, in order to keep 0 <= rkxi,yi <= 1, we further
define the notation akxi,yi , so that

rkxi,yi = sigmoid(akxi,yi) =
1

1 + e−a
k
xi,yi

(16)



With chain rule, the derivative w.r.t. akxi,yi can be written
as

∂P (hit, j|m̂t)

∂akxi,yi
=
∂P (hit, j|m̂t)

∂rkxi,yi
rkxi,yi(1− r

k
xi,yi) (17)

Equation (6) shows that P (Zt|m̂t) is the product of
the probability of each individual measurement P (zkt |m̂t).
There are also many points covered by more than one sonar
sensor. As a result, the gradient w.r.t. a point (x, y) should
be calculated analytically with chain rule and be furthered
simplified as

∂P (Zt|m̂t)

∂ax,y
=

K∑
`=1

∏
j!=`

P (zjt |m̂t)×
∂P (z`t |m̂t)

∂ax,y

 (18)

=

K∑
`=1

[
P (Zt|m̂t)

P (z`t |m̂t)

∂P (z`t |m̂t)

∂ax,y

]
(19)

=

K∑
`=1

[
α

1

P (z`t |m̂t)

∂P (z`t |m̂t)

∂ax,y

]
(20)

where α is used to denote the learning rate.

D. Algorithm Review

The entire algorithm is summarized as Algorithm 1. The
program integrates the calculation of expectation and gradi-
ents and makes the entire process more compact. Further-
more, the program calculate the variables P (unhit, i|m̂t)
recursively in the form of Punhit. The overall asymptotic
time complexity of processing a measurement of a sensor is
O(N2) where N is the number of points covered by a sensor.

In practice, the program manages most of the variables
in single-precision floating-point format instead of double-
precision floating-point one, which significantly boosts the
operational speed of the program while the maps produced
are basically unchanged.

IV. EXPERIMENTS AND RESULTS

Simulations are conducted to verify the algorithm pro-
posed in section IV.

In a simulation, a mobile robot mounted with sonar
sensors is programmed to move along a fixed route in a
synthetic map. The readings of sonar sensors are randomly
sampled from the forward sensor model at each time steps.
Concurrently, the algorithm we proposed and one based
on traditional inverse sensor model are both tested. Both
programs would try to reproduce the original map based on
those limited measurements. There are some more details
in experiment implementation to optimize the performance
of both of the algorithms and ensure the plausibility of the
experiment.

First, the forward sensor model used in simulation differs
from the one in the algorithm in the parameter of pkhit,(x,y)
and the variance of Gaussian noise δ. This setting challenges
the robustness of both algorithms. For example, we make
δ = 0.05 in the mapping nodes while δ = 0.1 in simulation
node.

Algorithm 1 Mapping via Gradient Ascent

Input: :
zkt : measurement from the k th sensor at time t;
akx,y :map cells covered by the k th sensor estimated last
time;

Procedure: :
P ← 0;Punhit ← 1; dP

dakxi,yi
← 0; dPunhit

dakxi,yi
← 0;

for i = 1; i <= kN ; i++ do
set N(zkt |di) = 1√

2πδ2
e

(zkt −di)
2

δ2

set rkxi,yi = sigmoid(akxi,yi)
P+ = N(zkt |di)Punhit × pkhit,(xi,yi)r

k
xi,yi

dP
dakxi,yi

= N(zkt |di)Punhit × pkhit,(xi,yi)r
k
xi,yi(1 −

rkxi,yi)
for j = 1;j < i;j ++ do

dP
dakxi,yi

+ = N(zkt |di)rkxi,yip
k
hit,(xi,yi)

dPunhit
dakxj,yj

end for
dPunhit
dakxi,yi

= Punhit(−pkhit,(xi,yi))r
k
xi,yi(1− r

k
xi,yi)

Punhit = Punhit(1− pkhit,(xi,yi)r
k
xi,yi)

for j = 1;j < i;j ++ do
dPunhit
dakxj,yj

= dPunhit
dakxj,yj

(1− pkhit,(xi,yi)r
k
xi,yi)

end for
end for
if zkt ≥ zmax then

P+ = Punhit
for i = 1; i <= kN ; i++ do

dP
dakxi,yi

+ = dPunhit
dakxi,yi

end for
end if
// Update map
for i = 1; i <= kN ; i++ do

gradient = clip( 1
P

dP
dakxi,yi

,maxgradient)

akxi,yi = akxi,yi + α× gradient
end for

Second, each mapping program implements a threshold
to transform its outputs into binary maps. Any cells with
occupancy value larger than the threshold would be rendered
as obstacles. The binary maps are further filtered with
morphological operations like eroding and dilating. These
operations are computer graphics operations that filter out
scattered misjudged cells or expand detected obstacles.

Third, hyper-parameters like learning rate, thresholds, and
morphological operations are manually tuned to minimize
the mean square error (MSE) between the reconstructed map
and the original map. It is worth noting that MSE can hardly
indicate the similarity between two matrices but it could be
simple and efficient hints to quantify the tuning process.

Some parameters critical to the experiments including the
learning rate, the grid resolution of the map, the horizontal
angle of the sonar sensors are presented in Table 1. We
learned from the experiments that the execution time and
mapping performance of the algorithm would be significantly
influenced by different combinations of different parameters.



Parameter Value Parameter Value
learning rate 30 sensor lowest reading 0.1m
grid resolution 0.1m sensor highest reading 3m
threshold 0.7 horizontal angle 90◦

size of the map 70m * 70m

TABLE I: Parameter table shows parts of the hyperparameter
used in the experiments.

The distribution of sonar sensors are shown by the over-
head view of the robot in Figure 3.

Fig. 3: Sensors’ placement used in the experiments. Black
lines represent the boundary of the robot. Blue circles
correspond to the placement of the sonar sensors. Red lines
indicate the FOV of these sensors.

Subfigures (a-c) in Figure 4 show the original map, the
map reconstructed by our method, and the map generated
by traditional algorithm [5] . Both of the mapping programs
are optimized for this map by tuning hyper-parameters.

Freezing the hyper-parameters in both programs, we test
our proposed method and the traditional algorithm on another
slightly more difficult map to further validate their perfor-
mances. Subfigures (d-f) in Figure 4 show the outcome of
this map. Both of the mapping programs remain unchanged
after fine-tuned for the first map.

It can be observed from the second experiment that some
parts of the maps are unobservable and some corners can
only observed in only one or two time steps. Parts circled in
red, as stated in section II would introduce sensor conflicts in
many mapping algorithms based on inverse sensor models.

Experiments shows that the algorithm proposed in this
paper can produce maps with high accuracy online as well as
solve the problem of sensor conflicts. The traditional produce
misjudged, scattered obstacles even with optimized filters
and it fails to detect the doorway circled in red. However,
the method we propose sometimes seems to do mapping
more aggressively, leaving occupied cells free until fully
convinced.

V. DISCUSSION AND REASONING

As shown in section III and IV, the algorithm is grounded
with solid mathematical bases and we could use the fine-
tuned algorithm to do mapping and static obstacle detection
with rather satisfying accuracy. The program can handle

many sonar sensors with proper efficiency and performance.
During the experiments in section IV, the program takes
30 milliseconds to perform an iteration of gradient ascent,
updating the map based on measurements from 12 sensors
on a single thread of i7-8750H (Intel, The United State of
America).

It should be worth noting that the mapping algorithm
proposed is based on several non-trivial assumptions as stated
in section III. They limit the algorithm’s potential to achieve
global optimum, but also simplify the maths, makes the
algorithm more robust and flexible.

The assumption that sensors are independent of each other
given m̂t avoids the need to directly model the interference
of different sensors. However, since a sensor could still
alter the occupancy value and thus affect the other sensors
at next iteration, the problem of sensor conflicts can still
be solved with this moderately complicated forward sensor
model under such independent assumption.

The assumption that all measurements before should be
integrated into a simple occupancy grid map and the premise
that we are not analytically solving for P (m̂t| ˆmt−1) are
strong claims that significantly reduce the difficulty of the
maths. Consequently, the learning rate is manipulated to
balance the weight between current measurements and the
past ones based on the application scene. Aggressive learning
rate tends to enable the robot to recognize obstacles faster
and even adapt to some dynamic obstacles, but sometimes
it also over-optimizes the maps for the current measurement
which leads to sub-optimal estimation of static environments,
while moderate learning rate could be optimized for static
environments.

The forward sensor model used in this paper has con-
sidered the case of dealing with multiple obstacles. It also
performs neat expectation estimation given maps with contin-
uous values, which is an attempt to generalize the work done
in [8] and [11]. This particular model manages to maintain
the balance between accuracy and optimization difficulty.

VI. CONCLUSION

The paper investigated deeply into the problem of mapping
with sonar sensors, introduced a generalized forward sensor
model for occupancy grids with continuous value, proposed
an algorithm that utilizes both the sensor model and gradient
ascent method, and conducted simulations to verify the
algorithm.

We presented several assumptions to make the problem
manageable and we explored the derivation of such EM
framework including the calculation of expectation and gra-
dients based on the forward sensor model. Then we com-
pared our algorithm with a traditional method to understand
both the advantage and disadvantage of our procedure.

The workflow we proposed can reproduce maps in real
time with high accuracy, overcomes the problem of sensor
conflicts. Fine tuning the parameters can make a program
specifically optimized for a particular set of problems.

There are still a number of limitations in our method.
The optimization method we adopted is a basic one and it



(a) ground-truth first map (b) our output on first map
(c) traditional output on the first map
[5]

(d) ground-truth second map (e) our output on second map
(f) traditional output on the second
map [5]

Fig. 4: Experimental result. (a),(d) shows the original map and the route of the robot. (b),(e) and (c),(f) show the maps
rendered by our algorithm and the traditional one respectively. Figure (a-c) depict the map both program optimize on while
figure (d-f) depict the test image.

is possible to further optimize the gradient ascent method
we implemented. Furthermore, the forward sensor model we
proposed does not consider the height of an obstacle. This
would sometimes affect the performance of the algorithm in
the form of modeling error.
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