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Abstract— Indoor localization for pedestrians has gained
increasing popularity among the rich body of literature for
the last decade. In this paper, a low-cost indoor mapping and
localization solution is proposed using the opportunistic signals
from ambient indoor environments with a smartphone. It is
composed of GraphSLAM-based offline mapping and Bayesian
filtering-based online localization using generated signal maps.
The GraphSLAM front-end is constructed by motion con-
straints from pedestrian dead-reckoning (PDR), loop-closure
constraints identified by magnetic sequence matching with WiFi
signal similarity validation, and observation constraints from
opportunistic magnetic headings after error rejection. Globally
consistent trajectories are created by graph optimization, after
which signal maps (e.g., WiFi, magnetic fields, lights) are
generated by Gaussian Processes Regression (GPR) for later
localization. We propose to use the pseudo-wall constraints
from the GPR variance map of magnetic fields and the
lights measurements as observations for particle filtering. The
proposed method is evaluated on several datasets collected from
both the in-compass office buildings and outside public areas.
Real-time localization is demonstrated on a smartphone in an
office building covering 2000 square meters with the 50- and
90-percentile accuracies being 2.30 m and 3.41 m, respectively.

I. INTRODUCTION

To meet the ever-rising demand for location-based services
(LBSs), low-cost solutions to indoor localization for pedestri-
ans have attracted much attention in recent years, especially
with the rapid development of sensory-rich and computa-
tional powerful smartphones [1]. In particular, opportunistic
signals (e.g., WiFi, magnetic fields) have been successfully
exploited for low-cost localization via fingerprinting [2]–
[5], due to their pervasiveness and free usage in mod-
ern buildings. As for fingerprinting methods, a fingerprint
database (a.k.a, signal maps) is required as a prior to archive
online localization. Manual site surveys are conventional
approaches to signal map generation. However, they are time-
consuming and labor-intensive [6].
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Fig. 1: From left to right: reference walking path labeled on
a floorplan for a large area of the HKUST academic building;
optimized trajectory by the proposed method and the generated GPR
variance map of magnetic fields as a side product.

To improve survey efficiency, automatic site surveying
approaches based on crowd-sourcing techniques [6], [7]
have been proposed in the mobile computing community.
Smartphone users are employed as free site-surveyors to
crowd-source their local sensing data to a public location
service provider for signal map generation. However, these
methods suffer from the data-quality control problem caused
by heterogeneous devices and unconstrained users [8]. In
addition, some prior knowledge (e.g., a physical floorplan) of
the survey area is required to provide ground truth locations
to label signal fingerprints. Yet the floorplans may not be
readily accessible to public users due to privacy concerns.

In the meantime, Simultaneous Localization and Mapping
(SLAM) [9] has been exploited by some researchers for sig-
nal map generation (or site-survey) and pedestrian localiza-
tion [4], [10]–[12]. Alternative to the robot SLAM solutions
[13] that normally require information-rich perception data
(e.g., 3D point clouds) [14] from expensive sensors (e.g.,
Lidar), signal SLAM techniques try to solve the mapping and
localization problems with inbuilt sensors of mobile devices
that feature low-quality sensing data. DPSLAM [4] was pro-
posed to solve an online SLAM problem using opportunistic
sensing on smartphones. However, the high computation
demand renders it less effective in continuous localization on
resource-constrained devices. Besides, GraphSLAM-based
offline site-surveying methods try to simplify the manual-
survey process, and accordingly, to reduce the labor and time
taken by surveyors to reach a usable signal map.

WiFi GraphSLAM [10] first formulated the signal SLAM
as a GraphSLAM problem. The authors came up with a WiFi
measurement model assuming the interpretability of signal
strength measurements at nearby locations. This assumption
requires dense WiFi sampling in the testing area to ensure



reasonable interpretability at the cost of more surveying
time and labor. Pedestrian Dead-reckoning (PDR) [15] is in-
volved to provide odometry information. Generally, magnetic
signals indoors are good location features benefiting from
the location-specific and temporal-stable nature induced by
anomalies from building construction materials. Gao et al.
[11] proposed to use magnetic sequence matching for loop-
closure detection within a GraphSLAM framework. Gaussian
Processes Regression (GPR) [16] was used to generate prob-
abilistic signal maps for later online localization. To reject
false loop-closures, the authors used a strong assumption on
the spatial distance between two matched sequences, which
confined the searching space of each sequence to its spatial
vicinity. This may be problematic in large-scale environments
where PDR suffers from significant drifts over time. In ad-
dition to magnetic matching, authors from [12] incorporated
the motion constraints from PDR into loop-closure detection
to relax this assumption. Online localization was achieved
by Kalman filtering using the generated magnetic maps.

In this paper, we propose a low-cost indoor mapping
(site-survey) and localization system for pedestrians using
opportunistic signals perceived by smartphone sensors. We
build our system on the top of several previous works [10]–
[12], and follow the generic framework of GraphSLAM-
based offline mapping and Bayesian filtering-based online
localization, yet with remarkable improvements. We use
magnetic sequence matching to identify loop-closures be-
tween distinct steps as [11], [12]. The magnetic sequence
is segmented into multiple sub-sequences at turning points
which are salient motion patterns for human walking in man-
made environments. In addition to the motion pattern, we
propose to use sequence-wise WiFi signal similarities for
loop-closure validation in order to reduce false positives.
This is very important in large-scale environments where
an increasing number of false positives will arrive due to
mismatches of magnetic signals. Additionally, we propose
to involve the opportunistic magnetic headings to the Graph-
SLAM front-end by carefully identifying magnetic anomalies
and throwing away error-prone values. The benefits observed
are two-fold: 1) global heading information is available for
the optimized trajectory, and 2) map consistency is improved
with extra measurement constraints.

GPR is used for signal map generation for WiFi signals
and magnetic fields. WiFi maps provide a global location
reference for the mapped area. By contrast, [12] only sup-
ported position tracking due to the lack of global references.
Different from authors in [11] who declared the useless of
magnetic maps in localization, we observe that the magnetic
GPR variance map resembles well the physical floorplan
in shape. We propose to use the generated magnetic fields
variance map as a “pseudo floorplan” to provide wall-
constraints for particle filtering to help the heading and step
length estimation in PDR. Moreover, lights along the walking
path are identified and then exploited to further constrain the
step lengths. Localization performance will be evaluated on
a smartphone in real-time.

We summarize our contributions as follows:

1) WiFi signal similarity validation in aid of magnetic
matching-based loop-closure detection and opportunis-
tic magnetic heading measurements for the GrapSLAM
front-end construction.

2) Pseudo-wall constraints from generated GPR variance
maps of magnetic fields and light measurements for
particle filtering-based localization.

3) Implementation of the proposed mapping and localiza-
tion system, through which globally consistent signal
maps and real-time localization are achieved.

The remainder of this paper is organized as follows. The
overall system architecture is introduced in Section II. We
detail the GraphSLAM-based offline mapping in Section III.
The particle filtering-based online localization using signal
maps is proposed in Section IV. We present the evaluation
results in Section V and conclude this paper in Section VI.

II. OVERVIEW

The proposed system (Fig. 2) consists of two core function
blocks namely the offline mapping and online localization.
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Fig. 2: Architecture overview of the proposed system.

Mapping follows the classical GraphSLAM framework
with two main components, namely a front-end that pop-
ulates an initial pose graph with constraints, and a back-end
that optimizes the graph to be most consistent with these
constraints. Given the optimized trajectory poses, location-
labeled opportunistic signals(e.g., WiFi fingerprints, lights,
magnetic field strength) are thus available for map gener-
ation, without the needs of a war-driven site survey. Lo-
calization follows the standard Bayesian filtering framework
where PDR provides the motion model, and opportunistic
signal measurements with smartphone sensors provide the
observation model with the aid of generated signal maps
in the mapping block. We do not desire an online SLAM
running on smartphones, as SLAM algorithms are normally
much more computational heavy than localization itself.
Currently, we use a generic particle filter to implement



Bayesian filtering. Some advanced sensor fusion frameworks
[17] can be exploited in the future.

III. GRAPHSLAM-BASED OFFLINE MAPPING WITH
OPPORTUNISTIC SENSING

In this section, we introduce the GraphSLAM-based of-
fline mapping system with an emphasis on the front-end cre-
ation. The whole system is composed of: 1) a GraphSLAM
front-end composed of PDR, opportunistic magnetic heading
measurements, and magnetic sequence matching-based loop-
closure detection with WiFi similarity validation; 2) pose
graph optimization; and 3) signal map generation.

A. PDR
PDR is normally composed of step detection, step length

estimation, and heading estimation. As it is not the focus
of our study, we choose a simple PDR algorithm based on
zero-crossing detection using inbuilt inertial sensors on a
smartphone. To avoid the side effects of magnetic anoma-
lies, we use only the accelerometer and gyroscope readings
for attitude and heading estimation. The step detection is
achieved by monitoring the gait cycling pattern exhibited
in vertical acceleration. An empirical step model [18] is
used for step length estimation. In our context, PDR-derived
poses are heavily used in constructing the GraphSLAM
front-end as they offer informative motion patterns in aid
of magnetic sequence segmentation, opportunistic magnetic
heading measurements, and motion constraints for the pose
graph generation.

B. Magnetic Sequence Matching-based Loop-closure Detec-
tion with WiFi Similarity Validation

We first perform turns detection on the PDR derived
trajectory and then split the whole magnetic sequence into
multiple segments. Loop-closures are identified by magnetic
sequence matching and then validated by the WiFi signal
similarity checking to reduce false positives.

1) Turns detection and magnetic sequence segmentation:
We assume a space-constraint indoor environment that fea-
tures straight corridors interconnected by salient turns (e.g.,
left/right/U-turn). This provides geometry constraints to the
user’s walking trajectory, which are crucial to successful
magnetic matching due to the limited coherence distance of
magnetic signals. Turn-taking is assumed as a salient motion
pattern in such scenarios. We thus exploit these turns to
segment the whole magnetic sequence recorded during the
site survey into sub-sequences for later loop detection.

Normally, turns generate salient variations (e.g., peaks
and valleys) on the curvature of the PDR-derived trajectory,
which may be trivially identified by peak detection, as shown
in Fig. 3a. Some user actions (e.g., side movement during
door-opening) may induce false positives. In such cases, we
try to merge two consecutive segments if they are checked
to be in a line. The magnetic field sequence is sliced into
multiple segments as per the detected turning points. To
reduce mismatches, only those informative segments are
selected, with sufficient traveling distances and significant
signal variations.
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Fig. 3: (a) Turns (red plus signs) and magnetic headings (blue
arrows) marked on the PDR trajectory. The magnified view is
for better visualization of headings. (b) true positive loop closures
shown on the final optimized trajectory stretched along z-axis for
better visulization. (c) false positives shown on the 2D trajectory.
(d) Mismatched magnetic sequences at location A and B.

2) Loop detection using magnetic matching: The mag-
netic signals suffer from the spatial sampling density varia-
tion problem [3] due to varying walking speeds and sampling
frequencies. To counter this problem, we use dynamic time
warping (DTW) to match these magnetic sequences. It is
proven to be an effective tool in measuring similarities
between time-varying signal series. As the user may re-
visit the same space in opposite directions, we compare
each pair of magnetic sequences both chronologically and
reverse-chronologically. Given the alignment between two
magnetic sequences, the step-to-step correspondences (say
loop-closures) between the walking trajectories can be easily
determined with timestamps.

Fig. 3a illustrates the correctly detected loop-closures. The
pair-wise loop-closures are shown as blue line segments
connecting distinct poses on the optimized trajectory from
one of the collected datasets. These loop-closures exhibit
considerable spatial consistency between overlapped walking
trajectories. On the other hand, an increasing number of
false positives may occur in large-scale environments (see
Fig. 3b), since magnetic sequence matching is error-prone
due to inevitable magnetic ambiguities (see Fig. 3c). For
instance, loop-closures between trajectory segments A and
B are incorrect as they are indeed on two opposite corridors.
The magnetic field sequences are shown in Fig. 3d. The two
sequences are very similar to each other in shape, despite
the fairly long samples in use. We will address this problem
in the next section.

3) Loop-closure validation using WiFi similarity: Mag-
netic signals with anomalies are inherently local features



lacking global uniqueness. Magnetic matching could suffer
from an increasing number of false positives in large-scale
environments. Too many false positives can corrupt the
optimization result. It is important to reduce false positives
while maintaining as many true positives as possible.

WiFi signals at faraway locations exhibit poor similarities
in signal strengths due to the significant signal attenuation
in complex indoor environments. The spatial uniqueness of
WiFi measurements improves with the dense deployment
of WiFi APs. Inspired by the complementary nature of the
two signal modalities, we propose to use the WiFi signal
similarity as an auxiliary tool to help identify incorrect loop-
closures from magnetic matching.

WiFi scans collected along the walking trajectory form
a sequence of measurements indexed by timestamps. To
compare the similarity between two given WiFi sequences,
a sequence-wise WiFi signal similarity metric, as illustrated
in Fig. 4a, is proposed. A similarity matrix between the
two sequences is created by computing point-wise signal
similarities for each pair of samples1. If the two sequences
match chronologically as reported by the loop detection
module, the average similarity of the diagonal elements in the
similarity matrix is adopted as the sequence-wise similarity.
Otherwise, the back-diagonal elements are used, as shown in
Fig. 4b. Two examples of the similarity matrix are illustrated
in Fig. 4c and Fig. 4d, which are created by two pairs of WiFi
measurement sequences with false-positive and true-positive
loop-closures, respectively.
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Fig. 4: (a) and (b) show the proposed similarity metric between
two WiFi sequences, where we have M = 4 samples in the query
sequence and N = 5 samples in the template sequence. (c) shows
the case of mismatching and (d) correct matching.

As for the case in Fig. 3b, the mismatched loop-closures
can be identified by the proposed sequence-wise WiFi
similarity. Admittedly, it is not the case for false loop-
closures created between two poses at nearby locations due

1We use the Gaussian kernel distance to measure the pair-wise signal
similarity between two WiFi scans.

to WiFi’s poor spatial resolution. However, the proposed
strategy works reasonably well in rejecting large amounts
of incorrect loop-closures on real-world datasets.

C. Opportunistic Magnetic Heading Measurements

In this section, we consider another case where geomag-
netic fields dominate ambient magnetic signals. Note that the
typical coherence distance of magnetic fields is around 30 cm
[11]. This reveals that the magnetic field from given magnet
sources varies fast across space. We observe that magnetic
signals measured by a smartphone held by a walking user
are fairly stable and uncorrupted in open spaces and wide
corridors. This is because in such circumstances smartphone
sensors are far away from the steel building materials, e.g.,
in the supporting pillars. Magnetic signals with rich local
anomalies are good candidates for loop-closure detection
as they are more spatially unique and informative. On the
contrary, undisturbed magnetic signals can provide global
heading measurements relative to Earth. To our knowledge,
these measurements have rarely been used in previous works
to create the GraphSLAM front-end.

Algorithm 1 Opportunistic magnetic heading measurements.

Input:
Raw readings: acc. {atn}

N
n=1, gyro. {wtn}

N
n=1, and mag.

{mtn}
N
n=1, number of sensor samples N ;

PDR odometry: {(δθtk , `tk)}Kk=1, number of steps K;
Output:

Opportunistic magnetic headings Θ at certain steps S;
1: compute orientations {θ̂mag

tn }Nn=1 relative to Magnetic
North using atn , wtn , and mtn ;

2: for each n ∈ [1, N ] do
3: sinθn ← sin

(
θ̂mag
tn

)
, cosθn ← cos

(
θ̂mag
tn

)
;

4: end for
5: Θ← ∅, S ← ∅, winsize = 7
6: for each k ∈ [1, K − winsize+ 1] do
7: 〈rot angle, arc len〉 ←

getCurvature({(δθti , `ti)}
k+winsize−1
i=k );

8: std sinθ ← std
(
{sinθn}tk≤tn≤tk+winsize−1

)
;

9: std cosθ ← std
(
{cosθn}tk≤tn≤tk+winsize−1

)
;

10: θ̄ ← averageAngle
(
{θ̂mag

tn }tk≤tn≤tk+winsize−1

)
;

11: if rot angle, arc len, std sinθ, and std cosθ meet
certain thresholding conditions; then

12: S ← S ∪ {k}, Θ← Θ ∪ {θ̄};
13: end if
14: end for
15: return S, Θ;

We opportunistically derive the magnetic headings when
we identify that the local magnetic disturbance is neglectable.
The proposed algorithm 1 is straight-forward yet effective in
practice. The intuition here is that if we keep walking along a
straight line (say corridors), the magnetic heading should be
constant in addition to bounded variations due to a human’s
walking pattern. This is the case when geomagnetic fields
dominate the instant magnetic signals. We may safely assume
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Fig. 5: Samples of generated signal maps. (a) detected lights marked with red triangles in the light intensity signal and clustered locations
shown with red circles on the optimized trajectory; units of colorbar: µT for magnetic maps (b) and dBm for WiFi maps (c).

that the magnetic signals are undisturbed if the magnetic
heading measurements are stable over a period of time during
a straight line walking.

We adopt Madgwick’s AHRS (a.k.a, attitude and heading
reference system) solver [19] to compute magnetic headings
incorporating magnetometer readings. The derived magnetic
headings are error-prone due to local anomalies. To reject
errors, we exploit the motion patterns derived by PDR. We
iterate over the derived poses and compute the instant curva-
ture of the walking trajectory within a sliding window along
with the variations of magnetic headings. We assert a straight
walking pattern if the curvature is fairly small. Furthermore,
the magnetic heading is assumed to be correct with fair
confidence once we identify bounded heading variations. To
account for the angle singularity problem (transition from
−π to π and vice versa), we use the sin and cos values for
variation calculation instead. An example is shown in Fig.
3a with opportunistic headings marked with blue arrows.

D. Pose Graph Optimization

The initial pose graph is populated with motion constraints
from PDR, loop-closure constraints from magnetic sequence
matching, and global heading constraints by opportunistic
magnetic heading measurements. Then a pose graph opti-
mization back-end is applied to optimize the poses to be most
consistent with the constraints. We use g2o [20] to implement
the graph optimization. There are still false positive loop-
closures even after the global constraints validation in large-
scale environments. The robust kernels are exploited to
counter this problem in g2o.

E. Singal Map Generation

The optimized trajectory from the GraphSLAM back-
end provides the “ground truth” locations for opportunistic
signals collected during walking. The location-labeled signal
fingerprints are then used for signal map generation. An
example of signal maps is illustrated in Fig. 5. As for WiFi
and magnetic fields, GPR proves to be effective in signal
map generation. The generated GPR maps include both the
mean and variance maps. We do not use the magnetic field
map directly for localization since it is difficult to achieve a
comprehensive magnetic map using only the measurements
collected along the walking traces [11]. However, the vari-
ance map for magnetic signals approximately matches the
physical floorplan. Considering that wall-constrained particle

filters show great effectiveness in reducing PDR drifts, we
propose to use the generated magnetic variance map as a
pseudo floorplan to help with localization. The lights are
first identified by peak detection (Fig. 5a). We assume that
each light is revisited a few times, and then cluster these
initially detected lights according to their spatial locations.

IV. LOCALIZATION WITH PARTICLE FILTER USING
SIGNAL MAP

In this section, an approach to using the generated signal
map for real-time localization is described.

A. Pseudo-wall and Lights Constraints

We do not assume the availability of floorplans. Instead,
the magnetic variance map generated previously by GPR is
utilized to provide “pseudo-wall constraints” to help with the
heading and step length estimation. As is illustrated by 5b,
the variance map of magnetic fields indicates approximately
the traversable area. The regions with small and large vari-
ances resemble the mapped corridors and unmapped areas,
respectively. Aside from the pseudo wall constraints from the
magnetic variance map, the lights along the corridor provide
more constraints on the step lengths of particles and help
speed up the convergence of particle filter.
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lights
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particles
cloud

particles
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Fig. 6: 1) particles with large heading errors hit the wall and perish
while evolving from A to D; 2) particles with either too long or
too short step lengths hit the wall when taking a turn; 3) particles
violating light constraints get killed at each light detection event.

Fig. 6 demonstrates how the wall constraints and light
constraints work on heading and step length estimation.
Intuitively, particles with correct headings will survive after
a period of straight walking, while those with large heading



errors are most likely to be killed in importance sampling
as they violate the wall constraints(Fig. 6-1). The particle
cloud is shrunk in the lateral direction (say perpendicular to
the walking direction), but elongated due to multi-hypothesis
of step lengths. Particles with longer step lengths move faster
than those with shorter step lengths. When the user takes a
turn, particles will violate the wall constraints and get killed,
whose step lengths are either too long or too short(Fig. 6-
2). Once a light is detected (Fig. 6-3), particles are killed
beyond the lights’ coverage vicinity. Similar to the effect of
wall constraint during taking turns, only those particles with
moderate step lengths are likely to survive.

B. Particle Filtering

Each particle maintains a hypothesis of the state X =
(x, y, θ, `) that involves the user’s 2D position (x, y), heading
θ, and step length `. The particle state gets updated at
each step k taken by the user incorporating the motion
measurements from PDR, namely step length estimate ˆ̀

k and
heading change estimate δθ̂k. When new observations(e.g.,
WiFi scan, lights detection) arrive, weights for each particle
are updated and a new set of particles will be generated
from the previous through importance sampling if necessary.
The state estimation is achieved by taking the centroid of
current particle clouds at each step. We accommodate the
basic particle filtering procedure.

Initialization: To enable global localization, we use the
Maximum Likelihood Estimation (MLE) with WiFi finger-
printing to provide the initial location guess, after which
particle filtering is used for position tracking. Even though
it is possible to rely on particle filtering without point-
mass initialization to achieve global localization, the conver-
gence speed is not guaranteed especially when running on
a resource-constrained smartphone. To further improve the
filtering convergence, the noisy magnetic heading is used to
narrow down the initial heading guess.

Weight Update: The overall weights wi
k are updated by a

few separate importance weights indicating how likely it is
that the measurements are consistent with the current particle
states. The generic importance weight for the ith particle is
κi ∝ P

(
zik|X̂i

k

)
. The weights for the WiFi observation,

lights observation, and pseudo wall constraints are shown in
the following:

κWiFi
i ∝ exp


NWiFi∑
j=1

(ẑWiFi
j − zWiFi

j )2

−2(σ̂WiFi
j )2

 , (1)

where ẑWiFi
j and zWiFi

j are the predicted signal measurement and
the observed for the jth WiFi access point (AP), respectively,
NWiFi is the number of observed APs in common, and (σ̂WiFi

j )2

is the predicted variance from the WiFi variance maps;

κlight
i ∝ exp


min

1≤j≤N light
d̂2j

−2σ2
light

 , (2)

where d̂j is the predicted distance of the current particle from
the jth light in the lights map, N light is the number of lights,
and σ2

light indicates the coverage of each light;

κwall
i ∝ exp

{
σ̂2

magn

−2σ2
wall

}
, (3)

where σ̂2
magn is the predicted magnetic signal variance at the

current particle location, and σ2
wall indicates the penalty on

particles that violate the pseudo wall constraints. Intuitively,
the penalty is in negative correlation with σ2

wall.
These weights are normalized to preserve a valid prob-

ability distribution over all the particles. If some measure-
ments are unavailable for the current step, the corresponding
weights are uniformly assigned. For instance, the lights-
based weight update is only triggered each time a light spot
is detected. In the end, the total weights are updated as per
wi

k = wi
k−1×ηκWiFi

i κlight
i κwall

i , where η is a normalization factor.
In our implementation, we choose σlight = 2 m, σwall = 5µT.

V. EVALUATION

Six datasets are collected from various indoor environ-
ments including office buildings in the HKUST campus and
a shopping mall outside, with walking traces lasting from 10
min to 20 min and coverage areas from 2000 m2 to 4000 m2

approximately. An Android smartphone (model Samsung
Galaxy S5) is used both for data collection and localization
evaluation throughout this paper. The surveyor is asked to
simply hold the phone and walk.

A. Mapping Results

1) Loop detection with validation: The statistics on loop-
closure correctness is summarized in TABLE I as per the
total number of True Positives (TPs) against False Positives
(FPs) for each dataset using the final optimized trajectories
as ground truth. False positives are reduced to the minimum
after the validation which proves the effectiveness of the pro-
posed WiFi similarity-based validation method. We choose a
strict similarity checking threshold that successfully rejected
all the FPs yet at the cost of throwing away a certain portion
of TPs. A less strict threshold could be feasible if a more
robust back-end is used.

TABLE I: Statistics on TPs/FPs of the detected loop-closures before
and after WiFi similarity validation

Dataset CYT AC3-1 AC3-2 AC4-1 AC4-2 SOGO

Before 2156
289

1038
873

322
215

1162
2430

610
80

223
157

After 1366
0

916
0

322
0

591
0

610
0

113
0

2) Trajectory estimation: Fig. 7 only show the results for
three more datasets in addition to those already shown in Fig.
1 and Fig. 5 due to limited space. The raw PDR paths reveal
the drift-prone nature of PDR, especially with the low-cost
smartphone sensors. However, the relative motion patterns
are correctly measured such as the long straight walking and
left/right/U-turns. As shown in Fig. 7, optimized trajectories
are not aligned correctly to the Earth frame without magnetic
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Fig. 7: From top to bottom: AC3-2, AC4-1, and SOGO. From left to right: 1) raw PDR-derived trajectories before optimization, 2)
optimized trajectories without incorporating opportunistic magnetic heading measurements, 3) the final optimized trajectories by the
proposed method, and 4) reference paths on the floorplan. The floorplan is used only for visuallization throughout this paper.

headings measurements. In some cases, they are not even
globally consistent rendering them useless for signal map
generation. However, the final optimized trajectories show
considerable consistency to physical floorplans.

TABLE II: Statistics on the ROE errors

Dataset CYT AC3-1 AC3-2 AC4-1 AC4-2 SOGO

Error/m 0.87 2.44 2.99 8.10 6.67 22.32

Due to the lack of ground truths, we characterize “how
correctly the user returns back to the origin” as Return-to-
Origin Error (ROE). The statistics are shown in TABLE II.
The ROE error 0.87 m is considerably small for CYT. We
credit this to the rich magnetic anomalies induced by the
construction materials in the building, working electronic
equipment from inside labs, and narrow corridors that confine
the walking trajectory taken each time. The ROE errors for
other office areas range from 2.44 m to 8.10 m mainly due to
varying coverage area and amounts of magnetic anomalies.
The ROE error 22.32 m for SOGO is significantly large due
to poor magnetic anomalies found in this area with wide
corridors and inconsistent walking trajectories caused by the
random interferences from the crowded people around.

B. Localization Results

Localization is tested with the generated signal maps
from the dataset CYT, and a real-time localization demo is
shown in the supplementary video. 1000 particles are used
throughout this experiment. The results are highlighted in
Fig. 8a by the blue lines which show sound consistency
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Fig. 8: Illustration of the localization results with (a) and without
(b) lights measurements. The testing walk originates from the left-
bottom corner with the square marking the start point and the circle
marking the endpoint.

to the reference path. The WiFi MLE results are shown as
red plus signs that are scattered through the region due to
lack of motion and wall constraints. The trajectory from a
Project Tango device is also plotted against the floorplan for
visual comparison. We observe clear drifts in Tango’s path
as is highlighted by the magnified view in Fig. 8a while



the results of the proposed method are constrained well in
the corridor region. This reveals that the proposed particle
filtering method with signal maps could achieve consistent
localization over time. Localization without light constraints
is shown in Fig. 8b. The performance degradation is due to
the lack of enough constraints on step lengths.
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Fig. 9: Localization error CDF.

We placed 25 check-points along the corridor and derived
their ground truth locations using a floorplan. The cumulative
distribution function plot (CDF) is then generated for error
analysis, as shown in Fig. 9. The 50-percentile and 90-
percentile accuracies are summarized in TABLE III for three
localization algorithms namely WiFi MLE, particle filtering
without and with light measurements. We observe significant
large errors (32 m, see the dash-dot line in Fig. 9) for the
proposed method with light detection disabled. This is due
to the recursive nature of particle filtering where real-time
localization results normally improve with time. The initial
error is likely to be unacceptable but will be reduced to a
bounded value once the particle filter coverages. We take two
consecutive rounds for the final proposed method. Particle
filtering with the generated WiFi maps and the “pseudo
floorplan” shows significantly better performance than WiFi
MLE. The performance is further improved with additional
constraints from the lights map on step lengths.

TABLE III: Localization accuracy statistics

Algo. MLE PF-w/o PF-w/ (1st) PF-w/ (2nd)

50-ile Error/m 5.35 3.04 2.45 2.30

90-ile Error/m 9.52 5.97 5.46 3.41

VI. CONCLUSIONS

In this paper, a low-cost indoor mapping and localization
solution was proposed using the opportunistic signals from
ambient environments with a smartphone. The system was
split into two blocks namely offline mapping within the
classical GraphSLAM framework and online localization
with Bayesian filtering using the generated signal maps.
The proposed WiFi similarity validation for loop-closure
detection showed great effectiveness in our implementation
where false positives were significantly rejected. The incor-
poration of opportunistic magnetic heading measurements

improved the GraphSLAM-based trajectory optimization and
helped generate more consistent maps. Real-time localiza-
tion on smartphones was achieved through particle filtering
with the generated signal maps. The pseudo-wall constraints
from the magnetic fields GPR variance map and the lights
constraints worked well in confining the particle clouds.
The proposed system was thoroughly evaluated on several
datasets collected from both the in-compass office buildings
and off-compass public areas where globally consistent tra-
jectories were reached. Real-time localization performance
was evaluated in an office building with a coverage area of
2000 m2. The 50- and 90-percentile accuracies achieved on
a smartphone were 2.30 m and 3.41 m respectively.
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