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Abstract: Attitude estimation from vector observations is widely employed in aerospace applications for accurate integrated nav-
igation using solutions to Wahba’s problem. Wahba’s solutions are practical but may corrupt facing critical cases in the presence
of almost collinear reference vector measurements, which is inevitable in robotic applications with redundant sensor arrays or
platforms with celestial vision sensors in similar directions. Different from existing algorithms, this paper presents a novel sequen-
tial multiplicative quaternion attitude estimation method from various vector sensor outputs. The unique linear constitution of the
algorithm leads to its specific name of Recursive Linear Quaternion Estimator (RLQE). The algorithm’s architecture is designed
to use each single pair of vector observation linearly so that the vector observations can be arbitrarily chosen and fused. The
closed-form covariance of the RLQE is derived that builds up the existence of a highly reliable RLQE Kalman filter (RLQE-KF).
Simulations and experiments are carried out to give the performances of our algorithm and representative ones. Compared with
other works, the proposed RLQE maintains good precision, better consistency and lower variance bounds. Moreover, the attitude
estimation performance with critical cases is especially much better than conventional Wahba’s solution on its continuity, accuracy
and variance.

1 Introduction

With the final mission of the Cassini orbiter, this space shuttle faced
its burn-up destruction in the atmosphere of Saturn, on Sep 15,
2017 [1, 2]. In the short modern technological history, realizing the
long-term voyage of a spacecraft has been extensively investigated.
Despite of the existing achievements in flight dynamics and material
sciences, navigation has become a kernel tool in complicated space
tasks for nowadays advances in integrated circuits and system engi-
neering [3, 4]. Attitude estimation is a key issue inside the navigation
because its error significantly determines the accuracy of velocity
and position estimates [5, 6]. While for space missions, celestial
instrumentation devices including star trackers, X-pulsar sensors are
required for accurate results [7]. They are actually always converted
to 3-axis vector observations for orientation determination. Attitude
estimation is also widely adopted in many areas including human
motion tracking, gait analysis, robotics and etc. [8–10]. They inte-
grates the information of various vector observations acquired from
one or more sensors. Representative methods can be categorized into
the filtering and the batch-processing methods. Filtering methods
are constituted by Kalman filtering, complementary filtering, particle
filtering, nonlinear observers and etc. [11–15].

Filtering methods for attitude estimation always encounter the
problem of nonlinearity as the rotation equalities are always param-
eterized by Euler angles and quaternions where trigonometric and
quadratic functions take place [16]. Commonly, solving this prob-
lem leads to the adoption of extended Kalman filter (EKF, [17]),
unscented Kalman filter (UKF [18]) and etc. [19]. As nonlinear filter-
ing introduces instability according to the choice of initial covariance
and may probably increase the execution time, Wahba’s solutions
sometimes replace filtering methods for fast computation speed and
controllable stability. However, as far as the noise scale is concerned,
filtering methods are obviously better than Wahba’s solutions in most

cases.
The Wahba’s problem has been studied for almost 50 years, which

plays an important role in attitude determination [20]. It uses the
weights to describe the significances of different vector observations
so that the least-square relationship between vector observations
is established. Many effective optimal algorithms have been pro-
posed to solve the Wahba’s problem e.g. the QUaternion ESTimator
(QUEST, [21]), Fast Optimal Attitude Matrix (FOAM, [22]), Singu-
lar Value Decomposition (SVD, [23]), the EStimator Of Quaternion
(ESOQ, [24]), our Fast Linear Attitude Estimator (FLAE, [25]) and
etc. [26]. To analytically compute eigenvalues and eigenvectors,
Yang et al. developed a method using analytic solutions to quartic
equation [27]. This method is proved to be efficient and owns almost
the same time consumption as that of QUEST. Wahba’s problem
significantly relies on the weight of each vector observation. And
according to theoretical and experimental results in existing litera-
tures [28], when reference vectors are almost collinear, denoting an
extreme case with a single vector observation pair, the estimated atti-
tude would be ambiguous and has large determination errors. Such
condition, in fact, always occurs due to the installation of sensors like
sun sensor, nadir sensor, magnetometer and etc. with a small field-
of view [29]. Therefore, for batch processing, existing methods may
face dilemma according to these critical cases [30]. Would there be a
solution to this problem? It is necessary to develop a new algorithm
that can obtain stable, continuous, accurate and robust attitude esti-
mation with one or more vector observation pair(s).

In our previous works [10, 25], we obtain several interesting find-
ings for attitude determination and estimation. These findings are
different from conventional solutions. One of them uses the rota-
tion on R4 to transform an arbitrary quaternion to the target attitude
quaternion by means of accelerometer readings. However, they are
not very continuous in practice and too specific for certain sensor
combination. Based on these point, we hereinafter present a simple
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and comprehensive algorithm that obtains robust and accurate atti-
tude estimation from vector observations. The main contributions are
listed as follows:

1.Based on our previous finding, we propose a new quaternion trans-
formation on R4 that further gives continuous attitude quaternion
estimates from a single vector observation pair.

2.Closed-form covariance propagation of this case is systematically
derived. Using the quaternion solution and corresponding variance
information, intuitive chain-rule of the multi-vector propagations
(RLQE) of attitude quaternion and its covariance are able to be
given.

3.System internals are intensively analyzed which shows the disadvan-
tage of the unsupervised fusion equations on the positive definiteness
of their covariances. A supervised version is proposed to make the
covariances positive definite all the time so that a parallel Kalman
filter is able to be further designed to give more smooth estimates.

Simulation and experiments are carried out from many aspects to
show the performances of the proposed RLQE. Results indicate
that the proposed RLQE is accurate and robust in face of criti-
cal cases and sometimes much more time-efficient with respect to
representative methods. Real-world robotic validations are also pre-
sented to give its superiority in mechatronic navigation, especially
the dead-reckoning (DR).

This paper is briefly structured as follows: Section II reviews
the previous work we have done for accelerometer and proposes
the novel attitude solution from a single vector observation pair.
Variance analysis is also given in this section. In section III, the
calculation procedure of RLQE is given. The angular rate determi-
nation is involved while the initialization of RLQE is discussed as
well. Section IV presents the simulations, experiments and results
on RLQE, compared with other representative methods. Section V
contains the concluding remarks.

2 Background and Our Method

2.1 Brief Background Review

Given a single normalized observation vector Db = (Dbx, D
b
y, D

b
z)>

in the body frame b and its corresponding normalized reference vec-
tor Dr = (Drx, D

r
y, D

r
z)> in the reference frame r, we can associate

the two vectors with the direction cosine matrix (DCM) C by

Db = CDr (1)

where the DCM satisfies

C ∈ SO(3),CC> = C>C = I, det(C) = +1 (2)

Fig. 2: The diagram that shows the vector observations and their
transformations between body frame b on the robotic arm and refer-
ence frame r. ref i denotes the i-th reference vector. C> stands for
the inverse rotation from frame r to frame b.

These definitions are also shown in Fig. 2. When there are pairs
of vector observations, the corresponding relationship is equivalent
to the Wahba’s problem, such that it minimizes the following loss
function

L(C) =
1

2

n∑
i=1

ai

∥∥∥Db
i −CDr

i

∥∥∥2
, n ≥ 2 (3)

in which ai denotes the weight of the i-th vector observation pair. ‖·‖
is the Euclidean norm. The main break-through of existing Wahba’s
solutions is to transform the original least-square problem into an
eigenvalue-finding problem [31], which is presented as follows

Kq = λmaxq (4)

where K is composed by

K =

[
S− I3×3tr(B) z

z> tr(B)

]
(5)

in which

B =

n∑
i=1

aiD
b
i

(
Dr
i

)>
S = B + B>

z =

n∑
i=1

aiD
b
i ×Dr

i

(6)

Fig. 1: The gradual evolution of sensor reference frames from large included angle to almost collinear case. s1 and s2 are two sensor reference
frames while θ1 and θ2 are their included angles for two different cases.
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with tr(·) denoting the trace of a certain squared matrix. λmax rep-
resents the maximum positive eigenvalue of K. When there is only
one pair of vector observations, it has been discovered that there
may have two eigenvectors related to the maximum eigenvalue 1
[28, 32]. In this case, the calculated quaternions are not continuous
in the Hamilton space H, making the calculated quaternion not reli-
able for fusion or control in later loops. This leads to an authentic
critical case when there are two or more same sensors installed on
the robotic arm for redundant estimation. An advanced version of
critical case is that the reference vectors are set up quite different
initially but coincide with each other gradually over time (see Fig.
1). For example, when the two installed star trackers are pointing
to the same distant light star, the difference between the two sen-
sors are very small. In the following sub-section, we are going to
give the generalized continuous quaternion solution to the single-
vector problem, hoping to overcome the shortcoming that Wahba’s
solutions reserve for the critical cases.

2.2 Continuous Quaternion From A Single Vector
Observation Pair

The Wahba’s problem can be converted equivalently to obtaining the
least-square solution to the system of vector observation pairs and
weights [25], such that


√
a1(Db

1 −CDr
1) = 0√

a2(Db
2 −CDr

2) = 0
...√

an(Db
n −CDr

n) = 0

(7)

First, we are going to solve the continuity problem. Different from
our previous method FLAE [25], motivated by the recursive quater-
nion kinematic equation, we would like to compute the attitude
step-by-step. A continuous rotation on R4 from a single vector
observation pair is given by [33]:

qk =
1

2
(Wk + I) qk−1 (8)

where k stands for the time epoch index. qk stands for the fused
quaternion at time epoch k; I denotes the identity matrix with
proper dimension; Wk is constituted by the vector observation pair
sampled at the same time, such that [33]

Wk = Drx,kM1(Db
k) +Dry,kM2(Db

k) +Drz,kM3(Db
k) (9)

in which M is the function of Db:

M1(Db
k) =


Dbx,k 0 Dbz,k −Dby,k

0 Dbx,k Dby,k Dbz,k
Dbz,k Dby,k −Dbx,k 0

−Dby,k Dbz,k 0 −Dbx,k



M2(Db
k) =


Dby,k −Dbz,k 0 Dbx,k
−Dbz,k −Dby,k Dbx,k 0

0 Dbx,k Dby,k Dbz,k
Dbx,k 0 Dbz,k −Dby,k



M3(Db
k) =


Dbz,k Dby,k −Dbx,k 0

Dby,k −Dbz,k 0 Dbx,k
−Dbx,k 0 −Dbz,k Dby,k

0 Dbx,k Dby,k Dbz,k



(10)

provided that Db
k = (Dbx,k, D

b
y,k, D

b
z,k)>. It is also obtained that

[33]

K>(qk−1,D
r
k)Db

k = Wkqk−1 (11)

where

K(qk−1,D
r
k) =

Drx,kP1(qk−1) +Dry,kP2(qk−1) +Drz,kP3(qk−1)
(12)

in which

P1(qk−1) =

 q0 q1 −q2 −q3
−q3 q2 q1 −q0
q2 q3 q0 q1


P2(qk−1) =

 q3 q2 q1 q0
q0 −q1 q2 −q3
−q1 −q0 q3 q2


P3(qk−1) =

 −q2 q3 −q0 q1
q1 q0 q3 q2
q0 −q1 −q2 q3


(13)

with qk−1 = (q0, q1, q2, q3)>. In previous main achievements, the
multi-vector attitude determination is considered in the classical
least-square problem. In fact in robotic applications, the attitude
determination is always employed with camera readouts where the
reference vectors are regarded as time-varying [34, 35]. In such case,
the original problem turn out to be a total least-square (TLS) prob-
lem. As discovered by Chang in [36], such problem is equivalent to
the classical one. Then we naturally have the following assumptions
in this paper:

Assumption 1. The input signals of excitations from unnormalized
vector observations are all finite-power signals, such that

0 < lim
T→∞

1

2T

∫T
−T

∥∥∥Db
∥∥∥2
dt < +∞

0 < lim
T→∞

1

2T

∫T
−T

∥∥Dr∥∥2
dt < +∞

(14)

and the derivatives of vector observations with respect to time are
bounded as well:

−∞ <
dDb

dt
< +∞

−∞ <
dDr

dt
< +∞

(15)

The first assumption is satisfied according to the motion constraint.
The second assumption usually holds due to 1) the full measurement
ranges of sensors, 2) the possible usage of low-pass and sum filters,
3) the internal sensor kinematics [37].

Assumption 2. The vector observation pairs are independent with
each other i.e.

ΣDb
i ,D

b
j

= ΣDr
i ,D

r
j

= 0, i 6= j (16)

where ΣA,B is the covariance between A and B.

Assumption 2 is widely presented in Wahba’s solutions e.g. QUEST,
FLAE and etc. [21, 25, 36].

(8) is derived from an approximated linear dynamical system. The
continuity of this solution is described by the following lemma.

Lemma 1. For a rigid-body object in continuous motion,
with time series of sampled sensor vector observation pairs{
Dr

1,D
r
2, · · · ,Dr

k,D
r
k+1, · · · ,D

r
n

}
,{

Db
1,D

b
2, · · · ,Db

k,D
b
k+1, · · · ,D

b
n

}
, where the time period ∆t
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between two neighboring pairs are very small, the update equation

qk =
1

2
(Wk + I) qk−1, k = 1, 2, · · · , n (17)

starting from initial quaternion q0, ensures the computed attitude
quaternion to be continuous.

Proof. The differenced quaternion between qk and qk−1 can be
computed as follows

qk − qk−1 =
1

2
(Wk − I) qk−1

=
1

2
(Wk − I)

1

2
(Wk−1 + I) qk−2

=
1

4
(Wk−1 + ∆W − I) (Wk−1 + I) qk−2

=
1

4
∆Wk (Wk−1 + I) qk−2

+
1

4
(Wk−1 − I) (Wk−1 + I) qk−2

=
1

4
∆Wk (Wk−1 + I) qk−2

+
1

4

(
W2

k−1 − I
)

qk−2

=
1

4
∆Wk (Wk−1 + I) qk−2

(18)

The derivative of W satisfies

lim
∆t→0

∆Wk

∆t
=
dWk

dt

=
d

dt

[
Drx,kM1

(
Db
k

)
+Dry,kM2

(
Db
k

)
+Drz,kM3

(
Db
k

)]
= Drx,k

d

dt
M1

(
Db
k

)
+Dry,k

d

dt
M2

(
Db
k

)
+Drz,k

d

dt
M3

(
Db
k

)
+

dDrx,k
dt

M1

(
Db
k

)
+
dDry,k
dt

M2

(
Db
k

)
+
dDrz,k
dt

M3

(
Db
k

)
(19)

Following Assumption 1, the above derivative is bounded. Therefore
the derivative

dqk
dt

= lim
∆t→0

qk − qk−1

∆t
=

1

4

(
lim

∆t→0

∆Wk

∆t

)
(Wk−1 + I) qk−2

(20)
always exists and bounded. Then as the quaternion is differentiable,
it is definitely continuous as well.

2.3 Continuous Quaternion From A Single Vector
Observation Pair: Covariance Propagation

Using the R4 rotation presented in (8), we are able to obtain the
covariance of the quaternion after each update. With the discrete
updating equation and letting

Gk =
1

2
(Wk + I) (21)

we compute the covariance of qk by

Σqk = E

{
[Gkqk−1 − E(Gkqk−1)] ·

[Gkqk−1 − E(Gkqk−1)]>

}

= E
{[

Gkqk−1 − Ḡkq̄k−1

] [
Gkqk − Ḡkq̄k−1

]>} (22)

in which

Gkqk−1 − Ḡkq̄k−1

=
(
Ḡk + δGk

)
(q̄k−1 + δqk−1)− Ḡkq̄k−1

= Ḡkδqk−1 + δGkq̄k−1 + δGkδqk−1

(23)

where x̄ denotes the mean value of x. Note that the second-order
item δGkδqk−1 can be ignored in later computation, the quaternion
covariance is calculated by

Σqk = E
{[

Ḡkδqk−1 + δGkq̄k−1

] [
Ḡkδqk−1 + δGkq̄k−1

]>}

= E



Ḡkδqk−1(δqk−1)>Ḡ>k

+δGkq̄k−1(δqk−1)>Ḡ>k

+Ḡkδqk−1q̄>k−1(δGk)>

+δGkq̄k−1q̄>k−1(δGk)>


(24)

Two items i.e. δGkq̄(δqk−1)>Ḡ>k , Ḡkδqk−1q̄>k−1(δGk)> equal
to zeros since there is no correlation between current vector observa-
tion and estimated quaternion in last epoch. Finally, the covariance
arrives at

Σqk = GkΣqk−1G>k +
1

4
E
[
δWkq̄k−1q̄>k−1(δWk)>

]
=

1

4

[
(Wk + I)Σqk−1(Wk + I)

+K>(qk−1,D
r
k)ΣDb

k
K(qk−1,D

r
k)

] (25)

where

δGkq̄k−1 =
1

2
δWkq̄k−1 =

1

2
K>(qk−1,D

r
k)δDb

k (26)

is invoked.

Lemma 2. The quaternion covariance propagation in (25) is rank-
deficient and semidefinite.

Proof. In the first item, we have

λWk,1 = λWk,2 = 1

λWk,3 = λWk,4 = −1
(27)

since [28, 33]

Wk = W>
k ,W

2
k = I,Wkqk = qk (28)

Therefore, (Wk + I)Σqk−1(Wk + I) has the rank of 2 and is
semidefinite. In another item, ΣDb

k
is defined to be definite. Hence

rank(ΣDb
i
) = 3 (29)

Meanwhile, we have

rank
[
K>(qk−1,D

r
k)
]

= 3 (30)

Then it is obtained that

rank
[
K>(qk−1,D

r
k)Db

k

]
=

min


rank

[
K>(qk−1,D

r
k)
]
,

rank
(
Db
k

)
 = 3

(31)

Likewise we have

rank
[
K>(qk−1,D

r
k)Db

kK(qk−1,D
r
k)
]

= 3 (32)

While K>(qk−1,D
r
k)Db

kK(qk−1,D
r
k) is a 4× 4 matrix. Hence

it is rank deficient. Besides, as this matrix is in quadratic form, its
first 3 eigenvalues should be similar with that of ΣDb

k
i.e. they are
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positive values. However, as K>(qk−1,D
r
k)Db

kK(qk−1,D
r
k) is

proved to be singular, its 4th eigenvalue should definitely be 0. This
proves that K>(qk−1,D

r
k)Db

kK(qk−1,D
r
k) is semidefinite, as

well. Combining the ranks and positive definiteness of the two items,
the overall covariance is semidefinite.

Remark 1. The above lemma sets a gap to the covariance since it is
semidefinite all the time. Such property would be harmful to those
systems with observation covariance requirements e.g. the Kalman
filter. In classical Kalman filter, when the process and observation
covariance matrices are both semidefinite, the filtered states and their
covariances are assumed to be critically stable. That is to say, in
this occasion, the filtering is unhealthy. In the following lemma,
the quaternion propagation is revised to ensure positive definite
covariances.

Lemma 3. The supervised transformation qk = 1
j [Wk + (j − 1) I] qk−1

obtains the same stable solution over iterations but may gener-
ate covariance matrices with much more positive definiteness, in
which the refinement constant j denotes an arbitrary natural number
satisfying j > 2.

Proof. The recursive quaternion solution, as described in (8), can be
transformed by

2qk = (Wk + I) qk−1

⇒ jqk = (Wk + I) qk−1 + (j − 2)qk

⇒ jqk ≈ [Wk + (j − 1)I] qk−1

(33)

The above approximation is accurate when the sampling period is
small. When such condition does not exist, there be tiny differ-
ences, with which, however, the global convergence is not affected
since at steady state the quaternions at neiboughting time epochs
are exactly the same. As shown in Lemma 2, Wk + I is semidefi-
nite which leads to the semi-definiteness of quaternion covariance.
Here, letting Gk = 1

j [Wk + (j − 1) I], with δGk = 1
j δWk, the

quaternion covariance is derived to

Σqk =
1

j2

{
[Wk + (j − 1) I] Σqk−1 [Wk + (j − 1) I]

+K>(qk−1,D
r
k)ΣDb

k
K(qk−1,D

r
k)

}
(34)

We can see that this result ensures the obtained covariance positive
definite if the initial quaternion covariance is given to be posi-
tive definite. The stable solution to the revised form does not alter
since they are identical to the same eigen system Wkqk = qk.

3 Quaternion and Angular Rate from Vector
Observation Pairs

3.1 Recursive Linear Quaternion Estimator (RLQE)

The quaternion estimation from vector observation pairs can be
treated as the recursive rotation from each single pair. Assume that
we currently have n pairs of vector observations. Using the quater-
nion propagation in (17) and the variance propagation in (33), we
obtain the following chain rule

R :



q−k,1 =
1

j1

[
Wk,1 + (j1 − 1) I

]
qk−1,qk,1 = Y(q−k,1)

q−k,2 =
1

j2

[
Wk,2 + (j2 − 1) I

]
qk,1,qk,2 = Y(q−k,2)

...

q−k,n =
1

jn

[
Wk,n + (jn − 1) I

]
qk,n−1,qk,n = Y(q−k,n)

qk = qk,n
(35)

with n = 1, 2, · · · , where qk,i stands for the quaternion at time
epoch k which is undertaking fusion from i-th sensor. q− is the
forecasted quaternion. ji is the i-th refinement constant for possible
positive-definiteness of covariance. Y(q) = q

‖q‖ is the normaliza-

tion operator on R4. We define this quaternion propagation function
as

qk = R
(
qk−1,

{
Db
k,i,D

r
k,i|i = 1, 2, · · · , n

})
(36)

where Dk,i is the vector observation from i-th sensor at time epoch
k that leads to Wk,i. With each single pair of vector observations,
the covariance is propagated independently under the Assumption 2.
Then, the covariance propagation’s chain rule is given by

RΣ :



Σqk,1 =
1

j21



[
Wk,1 + (j1 − 1) I

]
Σqk−1[

Wk,1 + (j1 − 1) I
]

+K>(qk−1,D
r
k,1)ΣDb

k,1

K(qk−1,D
r
k,1)



Σqk,2 =
1

j22



[
Wk,2 + (j2 − 1) I

]
Σqk,1[

Wk,2 + (j2 − 1) I
]

+K>(qk,1,D
r
k,2)ΣDb

k,2

K(qk,1,D
r
k,2)


...

Σqk,n =
1

j2n



[
Wk,n + (jn − 1) I

]
Σqk,n−1[

Wk,n + (jn − 1) I
]

+K>(qk,n−1,D
r
k,n)ΣDb

k,n

K(qk,n−1,D
r
k,n)


Σqk = Σqk,n

(37)
which is defined as the function

Σqk = RΣ

(
Σqk−1 ,qk−1,

{
Db
k,i,D

r
k,i|i = 1, 2, · · · , n

})
(38)

The variance bounds of the quaternions are computed then with

diag(σq0,k , σq1,k , σq2,k , σq3,k ) = ±
√
diag(Σqk ) (39)

in which diag(Σqk ) extracts the diagonal elements of Σqk .

3.2 Angular Rate Estimation from Strapdown Sensors

Using the obtained quaternions, the angular rate determination is
also able to be computed in case of emergency incidents e.g. gyro-
scope failure. The first-order quaternion kinematic equation is given
by [14]

dqω
dt

=
1

2
qω ⊗$ (40)

where ⊗ denotes the quaternion product, $ =
(

0, ω>
)>

with

the angular rate of ω = (ωx, ωy, ωz)>. Rewriting (40), namely
expanding the quaternion multiplication, we have

dqω
dt

=
1

2
qω ⊗$ =

1

2

 q0 −q1 −q2 −q3
q1 q0 −q3 q2
q2 q3 q0 −q1
q3 −q2 q1 q0

$ (41)
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Then the angular rate is easily obtained by quaternion inversion:

$v,k = 2q−1
v,k ⊗

dqv,k
dt

= 2q∗v,k ⊗
dqv,k
dt

= 2Uqv,k ⊗
[R(qv,k−1)− qv,k−1

∆t

]
U = diag(1,−1,−1,−1)

(42)

where qv,k denotes the quaternion from vector observations at time
epoch k while ∗ represents the conjugate quaternion. The later 3
components of $v constitute the angular rate ω.

3.3 Initialization of RLQE

The initial quaternion significantly determines the quality of the
starting state of the attitude estimator. A well-initialized attitude
quaternion is calculated by

qm0 = R
(
qm−1

0 ,
{

Db
0,i,D

r
0,i|i = 1, 2, · · · , n

})
Σqm

0
= RΣ

(
Σqm−1

0
,qm−1

0 ,
{

Db
0,i,D

r
0,i|i = 1, 2, · · · , n

})
(43)

considering halt when ∥∥∥qm0 − qm−1
0

∥∥∥ < η (44)

where m stands for the step index of the initialization process and
η denotes the relative initialization accuracy. Normally, the uninited
quaternion q0

0 can be chosen as (1, 0, 0, 0)>.

3.4 Outlier Rejection Law

In engineering practice, not all the sensors can meet the certain
project’s requirements. When using such sensor combinations, an
outlier rejection law is needed to reject sensor outliers. These outliers
may be induced by mechanical vibration, sudden voltage jumping on
ADC e.g. ESD, fatigue failure, model errors and etc. [38, 39]. As the
rate gyroscope is usually the most secure device onboard, it is fea-
sible to compare the angular rate estimated from vector observation
pairs with the gyro measurements. In static mode, the signal-noise
ratio (SNR) is very low according to the absence of noise. However,
when the measurement unit is operated in motion, the SNR signif-
icantly increases. At this moment, we may empirically deduce the
sensor failure by

‖ωv − ω‖
{
Pass < c
Fail > c

(45)

where c is an empirical constant defined according to the motion,
which is also related to sensor bias. In this way, sensors with outliers
can be exempted from being in the fusion process.

3.5 Kalman Filtering (RLQE-KF)

Seen from the chain rules presented in (35) and (37), a common
thinking is to design a system and adopts Kalman filtering to achieve
optimal state estimation [40]. To avoid cross-correlation between
the process and observation model, the RLQE quaternion and that
in process model are separated. Defining the state vector as the
quaternion, the system dynamics can be represented by [41]

dq

dt
=

1

2
[Ω×] q

⇒ qk = Φk,k−1qk−1 + Γkξk

(46)

where the transition matrix Φk,k−1, noise ξk and noise matrix Γk
are given by

Φk,k−1 =
∆t

2
[Ω×] + I

ξk = δω,Γk = −∆t

2
Ξ

(47)

with last estimated quaternion

Ξt =

 q1 q2 q3
−q0 −q3 −q2
q2 −q0 −q1
−q2 q1 −q0

 (48)

The measurement quaternion in observation vector is parallel with
the process quaternion. The discrete observation model is given by

qmeas,k = Hkqk + υk (49)

where qmeas,k = R(qmeas,k−1),Hk = I and υk is the noise
item. Then the stochastic model can be given by

Σξk = Σgyro = diag(σ2
gyro,x, σ

2
gyro,y, σ

2
gyro,z)

Συk = RΣ

(
Σqmeas,k−1

) (50)

where σgyro,i is standard deviation of gyro readouts of i-th axis.
Since the process and observations models are independent, the
classical Kalman update equations can be applied, such that

q−k = Φk,k−1q̂k−1

Σq−
k

= Φk,k−1Σq̂k−1
Φ>k,k−1 + ΓkΣξkΓ>k

Kk = Σq−
k

H>k

(
HkΣq−

k
H>k + Συk

)−1

q̂k = q−k + Kk(qmeas,k − q−k )

Σq̂k
= (I−KkHk) Σq−

k
(I−KkHk)> + KkΣυkK>k

(51)

where Kk is the Kalman filter and q̂ stands for estimated quater-
nion. The last equation that computes the covariance of estimated
quaternion is actually in the ’Joseph form’ ensuring the symmetry
and positive definiteness [42].

Remark 2. In this section, there are many parameters regarding the
implementation of the algorithms. First, for the RLQE, the refine-
ment constants are very important for the positive definiteness of the
covariance. When in real programming, the user can commonly set
the values to 3 since under such constraint the covariance is always
positive definite. The relative initialization accuracy η is in fact deter-
mined by the user’s demands and the maximum initial alignment
precision [43]. In principle, this constant can be given with some
testing experiments. In the outlier rejection law, the threshold c is
decided by the relative motion difference. One can obtain this value
by rotating the inertial measurement device on specific platforms
and compare the ideal angular rates and that from the vector obser-
vations. That is to say, this parameter is deduced by the response
performance [44]. In general, for RLQE and RLQE-KF, the sensor
variances should be pre-determined by large amount of statistics of
raw readouts. It should be noted that the initial sensor variance values
are very vital to the system. Improper settings may let the RLQE pro-
duce much larger variance bounds, which significantly deceases the
further filtering accuracy for Kalman filter. With the above proper
settings of the parameters, it is able to obtain highly precise atti-
tude estimation results in engineering. The overall implementation
is summarized in Algorithm 1.
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Algorithm 1 The Recursive Linear Quaternion Estimator (RLQE)
and its parallel Kalman filter.
1. Preliminary:
Numbers of available sensors: n
Relative initialization accuracy: η
Static mode indicator (angular rates): χ
Flag that enables the Kalman filter: EN_KF
Vector Observation updated flag: EN_VEC
RLQE updated flag: EN_RLQE
2. Initialization:

1.RLQE Initilization:
(a)k = 0,m = 1,q0

0 = (1, 0, 0, 0)>,Σq0
0

= 0.

(b)Get normalized sensor samples:
{

Db
0,i,D

r
0,i|i = 1, 2, · · · , n

}
.

(c)while
∥∥∥qmk − qm−1

k

∥∥∥ > η do

qm0 = R
(
qm0 ,

{
Db

0,i,D
r
0,i|i = 1, 2, · · · , n

})
, Σqm

0
=

RΣ

(
Σqm−1

0
,qm−1

0 ,
{

Db
0,i,D

r
0,i|i = 1, 2, · · ·n

})
, m = m+ 1.

(d)qRLQE,0 = qm0 ,ΣqRLQE,0 = Σqm
0

.
2.Kalman Filter Initialization (EN_KF = TRUE): q̂KF,0 =

qRLQE,0,Σq̂KF,0 = ΣqRLQE,0 .

3. Main Loop:
while no halt command received do

1.k = k + 1
2.If EN_KF = TRUE, Inertial Forecast:

(a)Get angular rates: ωk =
(
ωx,k, ωy,k, ωz,k

)>.

(b)
q−KF,k = Φk,k−1q̂KF,k−1

Σq−
KF,k

= Φk,k−1q̂KF,k−1Φ>k,k−1

3)If EN_VEC = TRUE, RLQE Propagation:
(a)Get pk pairs of normalized sensor samples:{

Db
k,i,D

r
k,i|i = 1, 2, · · · , pk

}
.

(b)Set empirical outlier rejection thresholds: {ci|i = 1, 2, · · · , pk}.
(c)qRLQE,k,0 = qRLQE,k−1, Valid fusion counter µ = 0.

4 Simulations, Experiments and Results

4.1 Experiments

In this section, the experimental validation and comparisons are
finished using our designed hardware platform. This platform is
constituted of a dual-core micro controller, several wireless trans-
mitters, one high precision 3DM-GX3-25 inertial measurement unit
(IMU) produced by MicroStrain, LORD Inc. and a high-end atti-
tude and heading reference system (AHRS) produced by Siyue Inc.,
Shanghai, China. Using the calibration software of the two main
units, the sensor biases of internal gyroscopes, accelerometers and
magnetometers are calculated and cancelled. The micro controller
is based on STMicroelectronics STM32F4-series chips with sev-
eral programmable interfaces like SPI, I2C, UART, CAN and etc.,
allowing for high-frequency data sampling, processing and trans-
mission. The wireless transmitters make the system more interactive
with the upper monitor on PC. Raw inertial data, reference Euler
angles (in DCM), reference quaternions as well as the sampling
timestamps are logged via an internal-configured SD card which
can be accessed via the onboard USB interface. In the following
experiments, the sampling frequencies of the IMU and AHRS are set
jointly to 500Hz. Validations and comparisons are carried out on a
MacBook Pro Mid-2015 with the configuration of an i7-8core CPU,
16GB RAM and 512G SSD. The MATLAB r2016b software is used

d)For i = 1 To pk
qRLQE,k,i = R

(
qRLQE,k,i−1,

{
Db
k,i,D

r
k,i

})
ΣqRLQE,k,i

= RΣ

ΣqRLQE,k,i−1
,qRLQE,k,i−1,{

Db
k,i,D

r
k,i

} 
$RLQE,k,i = 2UqRLQE,k,i ⊗

[
qRLQE,k,i − qRLQE,k,i−1

∆t

].

If ‖ωk‖ > χ and
∥∥ωRLQE,k,i − ωk

∥∥ > ci:
qRLQE,k,i = qRLQE,k,i−1

ΣqRLQE,k,i
= ΣqRLQE,k,i−1

.

Else: µ = µ+ 1.
e)
i If µ > 0: EN_RLQE = TRUE.

ii Else: EN_RLQE = FALSE.

f)
qRLQE,k = qRLQE,k,pk

ΣqRLQE,k
= ΣqRLQE,k,pk

.

4)If EN_KF = TRUE and EN_RLQE = TRUE, Kalman Correction:

Kk = Σq−
KF,k

(
Σq−

KF,k
+ ΣqRLQE,k

)−1

q̂KF,k = q−KF,k + Kk

(
qRLQE,k − q−KF,k

).

Σq̂KF,k
= (I−Kk) Σq−

KF,k
(I−Kk)> + KkΣqRLQE,k

K>k

q̂KF,k = Y(q̂KF,k)
.

5)Output:

(a)If EN_KF = TRUE and EN_RLQE = TRUE:
qk = q̂KF,k.

(b)Else If EN_KF = TRUE and EN_RLQE = TRUE:
qk = Y(q̂−KF,k).

(c)Else If EN_KF = FALSE and EN_RLQE = TRUE:
qk = qRLQE,k.

end while

for visual demonstrations. Time consumption of different algorithms
is collected using the MATLAB’s internal timer.

Fig. 4: Designed hardware for validation of proposed algorithm.
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Fig. 3: Estimated quaternions from the proposed RLQE and Wahba’s solution as well as the reference quaternions. The estimated quaternion
from RLQE is more continuous with less noise density.

4.1.1 Simulational Experiment: In this sub-section, we use the
golden reference DCM from the AHRS to generate the simulated
data samplings via

bsim,1 = Ctruer1 + ε
bsim,2 = Ctruer2 + ε

(52)

where Ctrue is the reference DCM and . The continuous reference
quaternions are also acquired from the device. The standard devia-
tions of all the sensor axes are set to 0.01 while the initial covariance
of quaternion is set to I. In this experiment, the configurations of the
reference vectors and weights are the same with that in last section.
Initialization of RLQE is carried out before the attitude evolution
is propagated. The refinement constant j is set to 3 to ensure the
positive definiteness of covariance. The empirical outlier-rejection
constant is set to c = 1 for normal motion. Reference vectors of vec-
tor observations are randomly computed. In this experiment, 4 pairs
of vector observations are generated for comparison.

The attitude quaternions from two different algorithms i.e. the
proposed RLQE and Wahba’s solution (here we use the QUEST)
are compared and shown in Fig. 3. The calculated Euler angles are
plotted in Fig. 5. Clearly, the estimated quaternions from Wahba’s
solution are full of data jumpings. The reason has been described
before in last section. As we can see, since the quaternions from
Wahba’s solution are not continuous in time domain, the estimated
Euler angles have relatively large errors.

Fig. 5: Estimated Euler angles from the proposed RLQE and
Wahba’s solution.
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Fig. 6: Estimated quaternions with their 3σ bounds from RLQE.

However, the proposed RLQE does not face such dilemma since
it uses the sub-optimal transformation on R4. This proves that the
proposed RLQE is more effective than Wahba’s solution when the
reference vectors almost coincide with each other. The variance
information is also obtained generating the Fig. 6.

The original variance of the quaternion is defined by Σqinit =
0.0001I since the quaternion is well-initialized. This figure vali-
dates the correctness of the variance analysis of the RLQE proposed
in former sections. Due to this, it is believed that in later applica-
tions, the RLQE can be fused with other sensors via optimal filtering
like Kalman filtering [45]. Also, by using (42), the estimated angu-
lar rates are plotted in Fig. 7. We may find out that the estimated
angular rates well coincide with the data from gyroscope. Also, it is
seen that the variance of the estimated angular rate from RLQE is
smaller than that of Wahba’s solution (see arrows in figure). This
indirectly reflects that the estimated quaternion from RLQE has
smaller variance than that from Wahba’s solution.

Fig. 7: Estimated angular rates from RLQE and Wahba’s solution.

4.1.2 Accelerometer and Magnetometer: Sudden Sensor
Failure: The accelerometer and magnetometer are two vital sen-
sors for both satellite attitude determination and consumer electron-
ics [14, 46]. The integration of this two sensors is employed for
compensation of in-run biases inside the gyroscope. Based on the

proposed RLQE, it is able to fuse the raw data from the two sensors
together and further generate the attitude and angular rate estima-
tion. Using the inertial data acquired in last experiment, the raw data
are processed via the 30-order and 5-order low-pass filters (LPFs)
respectively. The commitment of adding LPFs to the sensor outputs
is a common technique in engineering practice as it decreases the
influence of outer disturbances [47]. In order to get the variance of
the accelerometer and magnetometer, the device was put still on the
experimental table for 10 minutes while the data acquisition system
obtained the time series of the raw data. The standard deviations of
the two sensors’ data are computed as σax = 0.008

σay = 0.009
σaz = 0.008

,

 σmx = 0.014
σmy = 0.016
σmz = 0.011

(53)

where Ab = (ax, ay, az)> and Mb = (mx,my,mz)> are sensor
measurements from accelerometer and magnetometer in body frame
b respectively.

Fig. 8: Estimated Euler angles from accelerometer and magnetome-
ter.

Fig. 9: Estimated angular rates from accelerometer and magnetome-
ter.
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The reference vectors of the accelerometer is given by Ar =
(0, 0, 1)> while that of the magnetometer is computed as Mr =

(0.60311, 0,−0.79766)> according to the World Magnetic Model
2015 (WMM-2015, [48]). The included angle between Ar and Mr

is 142.907226◦. Here we simulate a condition that at one random
moment, the magnetometer fails forever. The estimated angles and
angular rates are plotted respectively in Fig. 8 and 9. The start-
ing point of failure is shown by the arrow. We can see that before
sensor failure, the experimental results well fit the reference statis-
tics which reflects that using this strapdown sensor combination,
the attitude and angular rate can be accurately computed via RLQE
or Wahba’s solution. However, as sensor failure happens, with only
the accelerometer, the Wahba’s solutions turn dramatically and sud-
denly no longer fit the reference angles. The estimated angular rates
are influenced accordingly with sensor failure. Estimated quater-
nions shown in Fig. 10 and 11 indicate that it is the quaternion that
determines the Euler angle performance.

Fig. 10: Estimated quaternions from proposed RLQE.

Fig. 11: Estimated quaternions from Wahba’s solution.

The estimated quaternions from Wahba’s solution start to ’jump’
as sensor failure occurs, which shows Wahba’s problem can hardly
be reliable at this moment. That is to say, some Wahba-based
representative algorithms for attitude estimation from such sensor

combination e.g. Yun’s QUEST-KF [49] may diverge in this con-
dition. Replacing conventional techniques, RLQE turns out to be
a powerful too dealing with this problem. It maintains continuous,
smooth and accurate, compared with reference angles, which verifies
its high robustness.

Fig. 12: Estimation results of RLQE and QUEST facing critical
sensor configurations.

The dynamical experimental results validated with a mere pair
of vector observations are logged in a video. In this video, the
algorithms are implemented on a Linux embedded computer where
the codes are programmed within the Robotic Operating System
(ROS) framework. Some characteristic pictures are listed in Fig.
12, showing the superiority of the proposed RLQE with respect to
Wahba’s solution. The audience may observe these results on the
URL presented in the running head of the first page for detailed
information.

4.2 Comparison on RLQE-KF

The combination of RLQE and Kalman filter i.e. RLQE-KF is a
competitive filtering technique in face of attitude estimation from
rate gyroscope and vector observation pairs, since it is intuitive and
simple. Apparently, from last section, we have seen that Wahba’s
solution can not overcome its internal drawback when critical sensor
configuration or failure takes place. In this section, the RLQE-KF
is compared to other representative methods using vector obser-
vations. Here we choose the Mahony’s SO3 complementary filter
[50] and Choukroun’s quaternion Kalman filter (qKF, [41]). The
Mahony’s SO3 filter is actually an algorithm on SO3 regardless of
the weights. Choukroun’s qKF exhibits the stochastic characteristics
of the measurement model from each pair of vector observations. In
this section, two pairs of vector observations are simulated via ref-
erence data in section B, with random reference vectors that have
large included angle. The complementary gain of SO3 filter is tuned
to 0.1 while the internal parameter of qKF is set to α = 0.0001. The
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variance of the gyroscope is measured as


σgyro,x = 0.00022

σgyro,y = 0.00025

σgyro,z = 0.00013

(54)

The vector observations are generated with the standard deviation
of 0.001. The refinement constant j of RLQE is set to 3 ensuring
the covariance’s positive definiteness. Calculated Euler angles are
plotted in Fig. 13. The plotted attitude estimation results indicate
that the estimation results more or less fit the reference angles. The
root mean-squared errors (RMSE) are summed up in Table 1.

Table 1 Attitude RMSE

Sources Roll Pitch Yaw

SO3 Filter 3.786620◦ 0.936678◦ 0.425984◦

qKF 2.741016◦ 1.845730◦ 7.767874◦

RLQE-KF 0.971208◦ 0.911189◦ 0.798750◦

As we can see, the RLQE-KF has the best relative accuracy com-
pared with other two algorithms. The qKF’s accuracy is not so
satisfactory while SO3 filter is basically feasible for real applica-
tions. This shows that the RLQE-KF can well combine the RLQE
and quaternion kinematic model together.

Fig. 13: Estimated results from RLQE-KF and representative algo-
rithms.

4.3 Computation Efficiency Evaluation

Since the proposed RLQE is a linear attitude estimator, the compu-
tation speed will be less than that of Wahba’s solution when there
are few sensor observations. In this sub-section, the two algorithms
i.e. QUEST and the proposed RLQE are carried out for 10000 times
respectively for each group of vector observations. With increasing
amounts of vector observations, there are 10 groups simulated. The
following figure describes the mean time consumption of the RLQE
and QUEST.

Fig. 14: Time consumption of RLQE-KF, qKF and SO3 filter.

Fig. 15: Time consumption of QUEST and the proposed RLQE.

It is seen from the figures that the two algorithms both have lin-
ear computation complexities i.e. O(n). When there are or less than
5 pairs of vector observations, the RLQE seems to be much faster
than QUEST. However, as the amount increases, the advantage of the
QUEST on time consumption becomes more and more overriding
with respect to that of RLQE. This is because in such occasions, the
RLQE requires more and more matrix multiplications and thus con-
sumes more and more computation time. It should be noted that the
slope of RLQE’s time consumption is larger than that of QUEST’s.
Hence, we can see that when there are few pairs of vector observa-
tions the best choice would be the RLQE especially when there is a
single vector observation pair. When applying RLQE-KF with gyro-
scope, the time consumption comparisons are shown in Fig. 14. We
can see the SO3 complementary filter has the least time consumption
while the qKF consumes the most. However, as SO3 filter can not
give any information of covariance, it can hardly be used in highly
reliable systems with quality monitoring. The proposed RLQE-KF
can provide the users with these data which helps checking the sta-
tus of the attitude estimator. That is to say RLQE finds a balance
between the accuracy and time consumption.
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5 Conclusion

This paper revisits the attitude estimation problem from vector
observation pairs. Based on our previous findings, the recursive
linear quaternion transformation a single vector measurement is pre-
sented to overcome shortcomings of classical Wahba’s solutions.
Mandatory proofs are given to show the continuity of the proposed
linear quaternion model. Variance analysis is given to describe the
stochastic characters of the obtained quaternion. Analytic quater-
nion covariance propagation formula from single vector measure-
ment sequences are derived. Supervised covariance propagation is
proposed to ensure the positive definiteness. With above studies,
the recursive multi-vector attitude estimation theory is established
that builds up the framework of the Recursive Linear Quaternion
Estimator (RLQE). The presentation of covariance presents a nat-
ural motivation of a parallel Kalman filter (RLQE-KF). Starting
from numerical examples, the experimental evaluations are given
detailedly to show the properties of the RLQE and RLQE-KF regard-
ing their accuracy, continuity, robustness and variance bounds. It
is investigated that RLQE maintains the same attitude estimation
accuracy with Wahba’s solution (QUEST, for representative) but
with smaller variance bounds. When applied in critical cases, the
Wahba’s solutions show a great deal of drawbacks, which can be
easily detected and overcome by the proposed RLQE. The RLQE
is then tested in a dead-reckoning experiment. The results show
that under specific sensor configuration, the robotic navigation abil-
ity of RLQE is much better than that of Wahba’s solution. Finally,
the execution time consumption of the two algorithms is studied
showing that when there are few vector observation pairs the RLQE
would be more suitable while in opposite the QUEST may be faster.
The overall testing results show that the proposed algorithm can be
applied in highly reliable robotic tasks and is much more superior to
conventional algorithms.
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