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Abstract—Cloud technology elevates the potential of robotics
with which robots possessing various capabilities and resources
may share data and combine new skills through cooperation.
With multiple robots, a cloud robotic system enables intensive
and complicated tasks to be carried out in an optimal and coop-
erative manner. Multisensor data retrieval (MSDR) is one of the
key fundamental tasks to share the resources. Having attracted
wide attention, MSDR is facing severe technical challenges. For
example, MSDR is particularly difficult when cloud cluster hosts
accommodate unpredictable data requests triggered by mul-
tiple robots operating in parallel. In these cases, near real-time
responses are essential while addressing the problem of the syn-
chronization of multisensor data simultaneously. In this paper,
we present a framework targeting near real-time MSDR, which
grants asynchronous access to the cloud from the robots. We
propose a market-based management strategy for efficient data
retrieval. It is validated by assessing several quality-of-service
(QoS) criteria, with emphasis on facilitating data retrieval in near
real-time. Experimental results indicate that the MSDR frame-
work is able to achieve excellent performance under the proposed
management strategy in typical cloud robotic scenarios.

Note to Practitioners—This paper was motivated by the problem
of sharing resources in cloud robotic systems efficiently for ac-
complishing real-time tasks. Existing approaches to cloud robotics
bear very strict assumptions that the resources are unconstrained
and ubiquitous. However, there are technical challenges for mul-
tirobot systems to access the cloud and retrieve resources in near
real-time. This paper presents a general framework for setting up
cloud robotic system with a novel resource management strategy.
We mathematically formulate the problem of multisensor data
retrieval through the cloud as a Stackelberg game, and propose
an optimal solution with proof. We then define the QoS criteria
for evaluation considering the constraints of robotic tasks. In the
experimental scenarios, our management mechanism significantly
improves the performance for multisensor data retrieval in the
evaluation of QoS, CPU load, and bandwidth usage.

Index Terms—Cloud robotic system, multisensor fusion, real-
time data retrieval.
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I. INTRODUCTION

ERVICE robots have become an integral part of our life,
S and the provided services are getting more and more com-
plicated than ever before. For traditional robotic systems, robots
have to carry adequate physical processing power and various
sensors among other resources to facilitate the completion of
various tasks such as visual navigation [1], range-finder-based
navigation [2], [3], path planning [4], recognition [5], and scene
analysis [6], [7]. However, it is infeasible to develop a universal
robot that could cover all possible services due to the limita-
tion of cost, reliability, power consumption, payload, sensory
and kinematic constraints, among many others. Instead, robots
can be relieved from hardware limitations while benefiting from
vastly available resources and centralized high computing capa-
bility provided by the cloud platform [8]. Therefore, it is reason-
able to combine multiple robots of limited capabilities to gen-
erate, access and process vast amount of data in a distributed
infrastructure facilitated by the cloud infrastructure. The coop-
eration of multiple robots with various capabilities would pro-
vide augmented capabilities and services that are impossible for
any single robot. The aforementioned multirobot systems are
thus termed as “cloud robotics” [9]. Considering the two-tier ar-
chitecture proposed in [10], we present a novel framework of a
cloud robotic system, as illustrated in Fig. 1. It consists of robots
with ubiquitous networks and a cloud-computing infrastructure
that connects the robots, sensors, portable devices and most im-
portantly a data-center. By adopting a proxy model, all data can
be retrieved from the cloud and managed by the proxy so that
the requirements on hardware for each robot can be minimized.

The major contributions of our work are as follows.

» A Stackelberg game-based [11] retrieval management
mechanism is proposed with consideration of the inter-
action among robot clients. We theoretically analyze its
optimization and implement its functionalities of admis-
sion control, request ranking and resource distributing.
Besides, a data buffer is set up on the access proxy for
frequently requested data.

+ A set of quality-of-service (QoS) criteria are proposed as
the primary assessment. The QoS’s are defined regarding
the fact that sophisticated collaborative robotic tasks are
usually time sensitive. CPU load and bandwidth usage are
compared in different scenarios.

In this study, we carried out real-time experiments in typical in-
door environments, where several physical clients perform data
retrieval. The retrieved data includes multitype data, e.g., on
board sensor data, regional maps and images.
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Fig. 1. A novel architecture of cloud robotic system.

The rest of this paper is organized as follows. In Section 11, we
discuss the related work of cloud robotics. Section III presents
our design of a cloud robotic system. In order to solve the in-
herent conflicts of MSDR, we introduce the theoretical mod-
eling and solution in Section I'V. To validate the proposed mech-
anism, we define two criteria of QoS in Section V. The experi-
mental setup and result analysis are given in Section VI. Finally,
Section VII presents the conclusion.

II. RELATED WORK

Multisensor data retrieval (MSDR) is an essential element
for cloud robotic systems. Typically, resource retrieval via robot
addressing becomes quite low-efficient, if multiple sensor data
need to be distributed simultaneously [12]. This is because there
exist inherent conflicts: each robot client tries to complete its
retrieval in the least possible time with the least possible cost.
Conversely, the proxy tries to maximize the resource utilization
of the cloud. Therefore, the MSDR is an important issue af-
fecting the performance of cloud robotic systems. Because the
“cloud robotics” is a relatively new field, we first briefly review
the state-of-the-art works with respect to the architectures of the
cloud robotics, current approaches and resource management of
multiagents, among others.

A. Architectures of Cloud Robotics

The architecture of cloud robotics as shown in Fig. 1 is
comprised of two levels: a network structure among robots
called robot-to-robot (R2R) and a cloud infrastructure including
connection interface from robot to cloud called robot-to-cloud
(R2C). On the R2R level, it is a wireless network of a group
of robots, such as Wireless Local Area Networks (WLANS),
Mobile Ad-hoc NETworks (MANETSs), among others. On the
R2C level, the infrastructure of cloud, which is characterized as
“Software as a Service” (SaaS), “Platform as a Service” (PaaS),
“Infrastructure as a Service” (IaaS), “Hardware as a Service”
(HaaS) [13], and “Robot as a Service (RaaS)” [14], provides a
pool of shared sensor data, computation and storage resources
that could be allocated by the proxy.

As discussed in [15], because of the heterogeneous services
and data, cloud is usually addressed by a common middleware
to achieve interoperability. Current works have been limited to
e-commerce and enterprise computing systems so far, such as
Eucalypus of Amazon EC2 [16], OpenNebula [17], and Nimbus
[18]. Applying the middle-ware in physical robotic systems is
one of the most vital research topics.

B. Current Cloud Robotic Approaches

Although the concept of networked robots or robots as web
services can be dated back to the 1990s [19], cloud robotics is
now in a better condition of both the network and the robot to
approach an innovated outtake:

* “DAvinCi” [20] was a cloud computing infrastructure to
generate models of environments, which allowed robots to
perform simultaneous localization and mapping (SLAM)
by cloud.

* The Gostainet [21] was an infrastructure of cloud robotics
for speech recognition on humanoid robot NAO [22].

* A world wide web for robots called RoboEarth [23] was
built for robots to autonomously share descriptions of en-
vironments and object models [24]. It was based on PaaS
[25] and a cloud engine.

* The “cloud-based robot grasping” [26] used the Google
Object Recognition Engine to recognize and grasp
common household objects.

» Carlos et al. presented a software framework to facilitate
cloud-hosted robot simulations that addressed the chal-
lenge of real-time task-oriented robot competition [27].

» Gouveia et al. proposed two distributed architecture for the
SLAM problem, and analyzed their efficiency, precision,
and accuracy [28].

* A robot cloud center [29] was designed to follow the gen-
eral cloud computing paradigm, while robots were pro-
vided as a service addressing the limitations in capacity
and versatility of robotic applications.

Besides, other applications were proposed as well. For instance,
knowledge change among small batch assembly robots [30],
robot navigation assistance [31], and so on. The aforementioned
research took advantage of a wide range of online resources.
However, there are still drawbacks and challenges to be fur-
ther addressed for cloud robotic systems. Among potential ben-
efits of cloud robotics, to provide seamless and low-cost service
robots is one of the most meaningful topics at the current stage.
In order to simplify the problem, most cloud-based robotic sys-
tems set a very strict assumption, i.e., the resource in cloud is
unconstrained [32]. As a matter of fact, most of the resources
in the cloud robotics system are indeed constrained [33]. For
instance, network bandwidth for transmitting image data, CPU
occupancy for parallel computation, as well as the number of
available hosts (proxy) in the cloud are all limited. Therefore,
how do we design a module to maximize the utility of avail-
able resources on demand is a difficult problem, especially when
many robots request the same resource or service in an asyn-
chronous manner.

C. Resource Management Approaches

Resource management problems are NP-hard in general,
which exist in computation systems, network communications,
transportation system, etc. For traditional resource allocation
and task scheduling, researchers proposed different optimiza-
tion techniques such as colony optimization, genetic algorithm,
fuzzy logic, and market-based approaches. These optimizations
minimize the execution time of tasks and cost, or maximize the
system utilization and throughput.

* Ant colony optimization (ACO) algorithm is used to make

efficient resource assignments for computational jobs



WANG et al.: REAL-TIME MULTISENSOR DATA RETRIEVAL FOR CLOUD ROBOTIC SYSTEMS 509

being processed. Thiruvady et al. proposed a parallel ACO
algorithm to efficiently solve the resource constrained
scheduling problem for mining supply chains [34].

* Genetic algorithm is used to solve the optimization
problem based on a natural selection process that mimics
biological evolution. Rodriguez et al. proposed a particle
swarm optimization algorithm for resource providing and
scheduling on Infrastructure as a Service (IaaS) cloud to
minimize the overall workflow execution cost [35].

* Fuzzy logic is a many-valued logic that lends itself to make
decisions in various systems. Cheng et al. proposed a op-
timization algorithm Fuzzy Clustering Chaotic-based Dif-
ferential Evolution (FCDE) in order to solve resource con-
strained project scheduling problem [36].

* Market-based approaches for resource management
[37]-[39] and power control and scheduling [40] are
characterized by capturing complex interactions among
autonomous agents and system, which suits the resource
allocation problem of cloud robotics most.

However, most of them have assumptions that are not suitable
for practical robotic tasks. For instance, the boundless commu-
nication and computation resources are inappropriate. The lim-
ited bandwidth resource should be considered in the real-life
scenario as presented in [41]-[43].

Autonomous negotiation among multiple robots has be-
come a crucial problem in a cloud robotics system when the
robot clients query resources simultaneously. The reasons
are twofold: multiagent systems are typically complex and
distributed; agents are combined together as an overarching
framework for integrated tasks [44]. For robotic systems, there
are several approaches introduced as follows.

* Centralized approaches [45], [46]: this kind of methods
have the advantage of using global knowledge to manage
all the available resources optimally, while the disadvan-
tage is that time and complexity cost are usually high.

 Distributed approaches [47], [48]: these methods are gen-
erally low cost, since they only use local information, but
they cannot always achieve the global optimum.

» Combinatorial approaches [49], [50]: this kind of ap-
proaches allocate resources that are combinations of
different tasks, rather than a single task in complex
systems. Their computational results indicate that com-
binatorial auctions generally lead to superior team-level
performance than single-task auctions.

In general, the above works are based on theoretical analysis
and simulation. Very limited number of real-time robotic sce-
narios have been reported in physical systems. Our goal is to
bridge this gap, such that we introduce the proposed system in
the next section.

III. SYSTEM DESIGN

A cloud robotic system distributes workload of sensing, com-
putation, and communications among a group of robot clients.
For design of the system, we introduce the functionalities in the
system, and data flow in the software platform.

A. Structure Design

The proposed framework of data retrieval is shown in Fig. 2.
It is a host-based network framework, which has three main
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Fig. 2. The data retrieval framework of a cloud robotic system.
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Fig. 3. Robot instances in a typical cloud robotic system. (a) Leading robot:
NIFTi. (b) Follower robot: Epuck.

entities involved for supporting the MSDR in a cloud robotic
system, namely, the data center (DC), the cloud cluster host
(CCH), and the robot clients (RC).

» Data center (DC): It is a relational database built on Post-
greSQL that stores various data. All data are maintained
and shared by any robot client in the network [33]. At the
same time, DC confronts unpredictable simultaneous re-
quests from the robot clients. Therefore, we introduce the
next entity.

* Cloud cluster host (CCH): It is a server that manages a
large amount of data retrievals. CCH consists of two major
modules: requesting negotiator (RN) and resource allo-
cator (RA). RN provides RC with different prices of re-
sources and controls the admission of requests. RA ranks
clients in the buffer queue and distributes resources to them
in terms of priority derived from the RN.

* Robot client (RC): It is a unit of heterogeneous robots with
various sensors in the lowest level of the framework. They
can be assigned to certain tasks. Details are introduced in
the next sections.

B. Robot Client Setup

The functionality of RC is composed of two major categories
of robots: the leading robot mainly to work as the database
feeder, while others act as consumers of the fed data.

* Well-equipped leading robot: the leading robot is shown
in Fig. 3(a), which is equipped with multiple sensors
such as a rotating laser scanner (for 3D point-cloud), an
omni-camera (Ladybug™), and an inertial measurement
unit (IMU) with a GPS module. It can feed an online
database with sufficient mapping and localization data.
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Fig. 4. Dataflow of multidata retrieval and communications in cloud system.

* Relatively poorly equipped follower robot: the follower
robot “Epuck,” as shown in Fig. 3(b), is equipped only with
a Firefly™ camera and a Wireless Fidelit y(WiFi) module.
It can request various types of sensor data via WiFi. For
example, the camera captures 2D bar-codes on the wall in
the target environment, then the WiFi module sends it to
CCH to request the location or regional map around the
target environment.

C. Dataflow in the Software Platform

The dataflow of multidata retrievals and communications in
proposed cloud robotic system (including DC, CCH, and RC) is
illustrated in Fig. 4. This system automatically launches a new
thread for each client that attempts to connect the network with
an approved address and port, with the following functions.

* Database Query.

This function is launched and managed only by CCH
which retrieves data from DC for RC. It utilizes standard
SQL [51] syntax to retrieve target data from a dynamically
updated DC which is also a relational database. Therefore,
DC access would be a bottle-neck in the system. Through
the management of CCH, the bottle-neck is alleviated. To
this end, we use the following subfunctions to assist the
retrieval, namely, Filter and Preprocess, Buffer Manage-
ment, and Scheduler.

* Filter and Preprocess.

In the proposed data flow structure, the filter and prepro-
cess blocks stand for general data preprocess. For example,
data fusion, feature fusion and decision fusion [52], are the
major means to decrease the frequency of database access
and to reduce data noise. We do not focus on this problem
in this paper.

* Buffer Management.

This function is launched and managed by CCH where a
local buffer is deployed for storage of frequently requested

data as depicted in Fig. 4. Because activities of robot clients

are usually regular, the same resource would be queried

repetitively. Therefore, we build the buffer strategy to help
optimize the database access.
* Scheduler.

Last but not least, the proposed scheduling scheme is

launched by CCH that allocates resources for all robot

clients’ requests on top of asynchronous communication
threads. Regarding the software platform, we compare

Twisted-based socket, actionlib package in ROS,

and Hadoop MapReduce as follows.

— Twisted-based socket is a framework for deploying
asynchronous, event-driven and multithread supported
network system which can effectively facilitates the
management of asynchronous threads in cloud systems.

—actionlib package only provides tools to create
servers that execute long-running goals, but it does not
support the message queue management, especially the
asynchronous access for multiple tasks in the waiting
list. However, cloud robotic systems have the require-
ments of request queue management.

— MapReduce includes a large number of disk seeks, by
which the bottleneck of disk access significantly slows
down the process. However, cloud robotic tasks have a
near Hard Real-Time (HRT) requirement when multi-
robots simultaneously retrieve data from the CCH.

Therefore, we preferably choose Twisted-based socket
[53] as the platform, because it is the user-defined struc-
ture that can be flexibly applied to various applications.
The asynchronous communication management based
on Twisted framework is implemented in the CCH
to manage all the connections among CCH and robot
clients through the reactor loop in parallel, as shown in
Fig. 4. Please note that reactor loop is a fundamental
infrastructure of Twisted-based socket, which is used to
automate asynchronous data transmission. In addition, the
reactor loops are running on both CCH and heteroge-
neous robot clients. The optimization mechanism of data
retrieval is modeled as a Stackelberg game. More details
are introduced in the next section.

IV. A SCHEDULING MECHANISM FOR MSDR

In this section, a MSDR problem is modeled and analyzed
to reach fast and reliable responses of the resource retrieval.
Regarding the modeled MSDR problem, we propose a Stack-
elberg game-based mechanism that manage the interaction be-
tween robot clients and CCH. Then, we present the process of
the resource allocation.

A. The MSDR Problem Formulation

As the number of services and data increases, efficiency
of multidata retrieval becomes more challenging. The MSDR
optimization problem is a scheduling of resource retrieval and
the resources required by those retrievals while taking into con-
sideration both the resource availability and the response time.
Regarding game-theoretic studies on the resource allocation
problem, we formulate the MSDR problem as a Stackelberg
game within our system. CCH and RCs act as the leader and the
followers [11] in the game, respectively. The leader maximizes
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TABLE 1
OVERVIEW OF NOTATIONS IN SECTION IV

A set of robot clients

A set of resource price to be retrieved

A set of completion time of resource retrieval
Willingness to pay of robot client %

Total number of robot clients

Admitted number of robot clients

Lagrange multiplier

Kin Threshold of admitted number of robot clients
To Deadline of execution time

{R:}L,
lp1--pN]T
[tr---tn)T

>3 zE o o

its revenue that is the sum of charges from the clients for the use
of data retrievals. The followers maximize their utility of data
retrievals for each task. We list notations defined in the section
in Table L.

Suppose that the resources are allocated from the CCH to a
set of IV robot clients R.. The price set of the resources p is
charged differently among the robots. We use bold symbols to
denote vectors in the rest of this paper. We formulate the system
model with two problems P;, P» for robot clients and CCH,
respectively.

» For each robot client R; € R, the utility surplus function

is defined as

where w; denotes the willingness to pay of robot client z, #;
is the completion time of robot i for resource retrieval. The
logarithmic function is a widely used utility function for
proportionally fair resource allocation in communication
networks (see [54]). This kind of function is selected be-
cause it is a concave completion function that can express
the quantities of problem interest in closed forms. Specif-
ically, the cost function in this paper is only related to the
completion time, which is the main concern of the MSDR
problem. Robot clients solve the following maximization
problem:

P 1= argmax ui(ti, pi) )

where (- )* denotes the optimal value, and (¢;, p; ) is a pair
of strategy profiles of each robot.
* For CCH, the revenue function is defined as

L(t,p) = Ztipi 3)
izt

where 7 is the number of robot clients that are allocated
resources. CCH maximizes its revenue by choosing the
optimal price for the constrained resource as

Py: p*= argmax L{t,p) @)

p>0

where (t, p) is pair of strategy profiles vector of the CCH
corresponding to the action of n robot clients, and t > 0
and p > 0 are in elementwise sense.

» Constraints are mainly focusing on the deadline of execu-
tion time 7 and the admitted number n as follows:

Y t;<Ty, n=0,...,N. (5)
i=1

Please note that the bandwidth cost in communication is
not taken into consideration.

B. The Optimization Solution of MSDR Problem

The optimization problem P, of maximization revenue func-
tion defined in (4) is not straightforward to solve, because it is
a nonconvex optimization problem with a nonconvex objective
function, a coupled constraint (5). However, it can be converted
into an equivalent convex formulation through the following
transformations and thus solved efficiently.

First, for each robot client R;, the utility surplus function u;
defined in (1) is increasing, strictly concave, and twice contin-
uously differentiable with respect to ¢;. Considering the uncon-
strained optimization problem P; of maximization utility sur-
plus function u; : R™ — R+, defined in (2), the first-order
necessary condition that £ is a local optimum is

Ou; (ti, pi)
at;

ti=t; =0 (6)

Therefore, we differentiate the utility surplus function as

8u,~(t,~,pi) o 3(0.]1' - log(l + ti) - tipi)
a, at;
1 +1; — P
= 0. (7

The optimal completion time of resources retrieval from robot
client ¢ is derived as

w
th=—"-1 ®)

bi

Additionally, #; > 0, there is no need to set p; higher than w;;
the CCH demands zero revenue when p; = w;. This means (8)
can be rewritten as

Wi

R ©)

Di

Second, assuming that the optimal admitted number of robot
clients is known as n* = Ky, we can convert the problem by
plugging (9) into (4), resulting in

n

w;t;
t* = argma I 10
grvgz%cA 1414 (19)
t; >0 1=1

Remark: The optimum is changed from p* to t* resulting
from transformation of (9), because the previous optimization
problem cannot be straightfowardly solved. With the trans-
formation, it can be easily proved that the Jacobian matrix
of function Y., ;(w;t;)/(1 +1¢;) in (10) is positive-definite.
Therefore, the nonconvex optimization problem (4) is con-
verted to a convex problem with a strictly concave function,
and its constraint set is convex and compact.

Considering the problem in (10) and the constraints in (5), we
define the Lagrange function as

A(ti, pi; A) = L(ti pi) + A (Z ti — To) (1D

i=1
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where A is the Lagrange multiplier. Let Vi, A{2;, p;, A) = 0, we
get the optimal completion time

Iy
== -1
ZERRVADY

Note that the time constraint defined in (5) must hold with
equality, because the objective is a strictly increasing function
with respect to #;. Thus, by plugging (12) into (5), we have a
boundary condition as

SRR

i=1

(12)

(13)

As derived in (9), the willingness to pay w; is proportional to the
optimal price p;, which is used to schedule response priority of
requests. We assume wy > wy > - -+ > wp, then the admitted
robot clients have higher willingness to pay than those are not
admitted, and A* must satisfy the condition of (13). A threshold
Ky, of the admitted number of robot clients should satisfy

w w
“Kao o1 and Mgl

A* A*
where Kty is used for the admission control, so only Ky, or
less robot clients can retrieve data. Moreover, we have \* =
(K /3) ) (To + Ki))? derived from (13).

The property of above solutions lead to the following
Algorithm 1 to compute A* and Kiy: we start by assuming
Ky, = N and calculate A. If the condition of (14) is not satis-
fied, Ky, is decreased by one and A is recalculated until it is
satisfied. Because w; < Ay and A; = (1)/(Ty + 1), Algorithm
1 always converges and returns the unique value of Ky and
A*. The complexity is O{N'), which has a linear relationship
with the number of robot clients. In addition, the optimal price
p; and completion time ¢; are calculated.

(14)

Algorithm 1: The Revenue Maximization Algorithm

Inputs: w;, Ty and N

Outputs: K, A*, ¢F, and p}
1. BEGIN
2 function Revenue(i, w;, Ty, € N)
k
3 ke NA(K) e (2
4 while w, < A(k) do
D Ve
5. Ee—k—1,Xk) <—(T7041+k)2
6 end while
7 K + kA « Ak)
8. tr= /o -1
9. p; = 13;23
10. return Ky, A\*, tf, p;

11. END

Definition 3.1: Nash Equilibrium (NE): Given the above
Stackelberg game, a pair of strategies profile (p},¢}) is an NE
for the Stackelberg game if for any player i:

wi(ty,pi) > wi(ti, pi)
L(t;,p;) > L{t;, pi).

Then, we have the following Theorem.

(15)

Theorem 3.1: Optimal Time Response and Prices for NE
Points: With limited bandwidth and Kj; robot clients are
admitted into the network, aforementioned Stackelberg game
admits NE strategy profiles that satisfy the conditions in (14).
There exists a A* when the optimal admitted number of clients
Ky, is achieved, such that each robot client ¢ receives an
optimal response time

E -1, 1=1,..., K
= I ’ ’ » fAth 16
: { 0, otherwise (16)
with the optimal price
p;-" — \/wi)\*, 1= 17-'-~>Kth (17)
Wi, otherwise.

The value of A* and K}y, can be computed using Algorithm 1,
forall: € N.

C. Resource Allocation Process

Previous theoretical analysis indicates the proposed a
Stackelberg game-based mechanism can optimize the MSDR
problem. The basic operation of the mechanism is implemented
in the CCH and comprises the following processes.

* Admission control: When a resource request is submitted,
request negotiator of CCH utilizes the proposed admission
control strategy (see Algorithm 1) to interpret the request
before determining whether to accept or reject it according
to the optimal threshold Ky,. Thus, it ensures that there is
no overloading of data, and sufficient robot client requests
can be fulfilled successfully.

* Request ranking: The request negotiator of CCH is also in
charge of ranking the admitted requests considering their
willingness to pay w; and time deadline 7 as presented
in Algorithm 2. Having access to the allocation requests
of all robot clients, the CCH can keep tracking of current
clients, and update the ranking list when a new request is
registered.

* Resource distributing: Requests with admission and a
priority are responded in accordance with the current order
in the rank list. In this situation, it optimizes both the utility
of each robot client and the revenue of CCH. When new
requests from robot clients arrive, the resource allocator
would respond the requests with updated rank list.

Algorithm 2: Priority Ranking Algorithm

Inputs: optimal price p; of request 2
Outputs: current priority list

1. BEGIN
2 function update priority list(p)
3 current_priority list.append(p;)
4 function is lowest priority(p})
5. current_priority_list.sort(p;)
6. while ¢ < Nihreshold
7 update priority list(p})
8 is lowest priority(p})
9 return current_priority list
10. END
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Given the above presented scheduling scheme, we define the
QoS in the following section to evaluate of the proposed mech-
anism with applications.

V. QUALITY-OF-SERVICE (QOS) CRITERIA

QoS, which is generally used to assess performance of a
SOA, plays a crucial role in impacting both users’ utilization
and resource providers’ revenue. It advertises performance
quality levels of service which are provided by resource
providers. At the same time, clients use it to optimally select a
data/service, which could in part fulfills the request. Therefore,
a well-defined set of QoS’s could greatly help the assessment
of the quality of a service framework.

In common cases, bandwidth usage is one of the most impor-
tant factors to define QoS, because the response of most net-
work-based applications is sensitive to it. In cloud robotic sys-
tems, instead of taking bandwidth usage as the only criterion,
QoS definition can be extended to other aspects regarding the
processing or storage capabilities of nodes. We selectively de-
fine the following QoS’s as primary criteria to assess the pro-
posed framework.

Definition 4.1: Time of Response (ToR): ToR defines the pe-
riod between sending a request and receiving the corresponding
response. It is formulated as follows:

(18)

ToR in near real-time situation has been considered, because so-
phisticated collaborating robotic tasks are usually time sensi-
tive. For instance, cooperative semantic mapping or 3D map-
ping using several robots needs to be completed in real-time,
although there exist bottlenecks in data transmission.

Definition 4.2: Reliability of Response (RoR): RoR is defined
as a success rate of the issued data retrievals. Its value is given
in a percentile and calculated as follows:

ToR = TData_received - TRequest_sent-

#Succeeded_Re uests
RoR = .

#Total_Requests (19)
RoR is a key criterion for all services. Typically, in large scale
systems, the perception results need to be shared and retrieved
with acceptable reliability.

In addition, the CPU load can indicate the computation com-
plexity, and bandwidth usage can vividly demonstrate the ef-
fects of resource retrieval on limited bandwidth, which directly
affect the value of ToR. Based on the above criteria, we imple-
ment the experiments and evaluate the proposed strategy in the
next section.

VI. EXPERIMENT AND EVALUATION

In this section, we first describe the experiment setup, then
we implement a simulation of parameter investigation to in-
struct the following experiment scenarios. Afterwards, we test
the proposed strategies in two scenarios of data retrieval, one is
for homogeneous resources of large size, the other is for hetero-
geneous resources.

A. Experiment Design

When exploring an environment, the map is not known as
a prior. A raw database should be built before other clients

Fig. 5. 3D point-clouds and image instance of a building.

TABLE II
CONFIGURATION OF CCH AND CLIENTS IN EXPERIMENT
Node CPU Memory  Hard Disk
Intel(R) Core(TM) i3 550
Host processor 3.20GHzx 4 8GB 1TB
Well-equipped Intel(R) Core(TM) i5-2540
Robot Clients processor 2.6GHz x2 4GB 300GB
Poorly-equipped  Intel(R) Celeron CPU 877 1.8GB 120GB

Robot Clients processor 1.4GHz X2

can query the data when they need. In this work, the proposed
system enables several poorly equipped robots without 3D sen-
sors to work in parallel to retrieve data of 3D map, which is built
by a well-equipped robot with an elaborated 3D laser scanner.
Detailed experimental phases are described as follows.

* Build a relational database including 3D maps and image
data of typical indoor environment, as shown in Fig. 5,
using a well-equipped robot.

» Each poorly equipped robot sends several requests to the
CCH by providing with its pose. Then, the CCH accesses to
the database, and matches the target data by sending SQL
requests using either the ID or other properties such as the
time-stamp and the type of data in the relational database.

* CCH manages all requests with predefined scheduling
strategy as introduced in Section IV.

* ToR, RoR, CPU load, and bandwidth usage are logged on
each robot and CCH to evaluate the experimental results.

The test is carried out in a multithread loop of communica-

tions which we introduced in Section III. Robot clients perform
as network nodes to request multiple data from the CCH. As
shown in Table II, different configurations of CCH and clients
are selected to retrieve data. The request data in our case are
demonstrated in Table III. The network throughput of each
client is limited to 2 Mb/s.

B. Parameter Investigation

In the proposed admission control, the Ky, is determined by
the distribution of willingness to pay from clients. If there are
too many clients with high willingness to pay, the ones with rel-
atively low willingness to pay will not be allocated data. Then,
the CCH would reduce the Ky, to fulfill the resource retrieval
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TABLE III
CONFIGURATION OF REQUEST DATA

Data type (Message) ROS topic Data size (Bytes)

navigation occupancy grid  /map 15745107
wheel odometry /odom 372
navigation odometry /pose 2911
transformation /tf 479

before deadline, namely, admission control. However, there is
no restriction on how to choose willingness to pay as a robot
client. We choose Weibull distribution because it is a versatile
distribution that can represent different kinds of statistical dis-
tribution and therefore can take on various characteristics based
on the following function:

3 (x B-1 _(z)8
f(:v;a,m:{E(E) e w200 g
0, z <0

where « > 0 is the scale parameter, and 8 > 0 is the shape
parameter. If the quantity x is the number of clients that are
willing to pay, and the Weibull distribution demonstrates the
proportion of the high willingness to pay robot clients, then 3
can be interpreted directly as follows:

« 0 < < 1: f(x) decreases monotonously and is convex
as x increases to co. Especially, it is an exponential distri-
bution when 8 = 1.

« 8 > 1. f(z) has a bell-shape, which increases as z in-
creases to the maximum and decreases thereafter. Espe-
cially, it is a Rayleigh distribution of mode ¢ = («)/(+/2)
when 3 = 2.

In order to indicate the relationship between the willingness
to pay and the threshold of admitted number of clients in the pro-
posed admission control, we compare the optimal K}, consid-
ering different distributions of willingness to pay of all clients
by tuning three factors: the shape parameter of Weibull distribu-
tion 3 that indicates different distribution of willingness to pay;
the number of clients requested resource “N’; and the timeout
period “Ty,” which was a required time for a certain task.

In the simulation, we tested the admission control proposed in
Section IV by selecting « = 1 and 8 = {0.1,0.5,1.0,1.5,5},
the time deadline Ty = {10, 20, 30,40} and client number &
= {12, 24, 48,96, 192}, respectively. One hundred runs were
carried out on each configuration. In Fig. 6, we can see that
Ky, increases as 3 increases when 7} is fixed. Especially, the
increasing rate of Ky, when 0 < 8 < 1 is much larger than the
increasing rate when 8 > 1. This is because the ratio of clients
with high willingness to pay is smaller in the range of 0 < £ <
1. In addition, the variation trends of K}, are quite similar when
the size of clients is 24, 48, 96, and 192, so we only show k = 12
in Fig. 6(a), and £ = 192 in Fig. 6(b). Moreover, the results also
show that the willingness to pay is a key factor for designation
of the scheduler since it can affect the QoS. Moreover, the above
results are references for the evaluation in the next section.

C. Data Retrieval Results

By differentiating the queried data into homogeneous and
heterogeneous, we implemented the following two scenarios to
evaluate the proposed strategies.

200
150

Mﬁ 100

50

o &

Fig. 6. Comparison of threshold of admitted user number. The black points
are the calculated Kj, of 100 runs on each configuration, magenta squares are
average values on each 100 runs, green curves are average values of Ky under
different T, and the colored surface is a regression over all the average values.
(a) Comparison of the threshold of admitted number of clients when there are 12
clients in total. (b) Comparison of the threshold of admitted number of clients
when there are 192 clients in total.

1) Scenario 1—Homogeneous Data Retrieval: In this sce-
nario, 12 robot clients attempted to request the same type of
messages, namely, map. The transmission of large binary ob-
jects map can easily overload the network. The aim of the sce-
nario is to justify the efficiency and reliability of data retrieval,
therefore the RoR in a series of Timeout Period, CPU load and
Bandwidth usage were used to evaluate the proposed scheduler
in the CCH.

To help the understanding of the process of the MSDR in
the proposed system, we describe the case that multiclients are
querying data simultaneously from the CCH in Fig. 7. A time
chart of processing 12-parallel requests on CCH is shown in
Fig. 7(a), which includes clients connection, database initializa-
tion, client querying, request scheduling, and request response.
In this case, the peak value of the CPU load is almost 50%. The
considerably dense load demonstrates that many clients were
building connections and querying to CCH. Moreover, we di-
vided the above 12-parallel requests into 4 successive periods
of 3-parallel requests, where the maximal CPU load is 33%, as
shown in Fig. 7(b). These results indicate that scheduling of re-
quests can benefit the CPU load on the CCH. In addition, the
second and third 4-parallel-requests save around 13% of CPU
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load than the first one [see Fig. 7(b)]. This shows that the /ocal
data buffer introduced in Section IV stores the queried data and
alleviates data retrieval even if multiclients are requesting the
data simultaneously.

We compared the bandwidth usage under the following two
situations. One is using the proposed scheduling strategy in the
CCH, as shown in Fig. 2, and the other one is not. Fig. 8 depicts
the bandwidth usage of MSDR between clients and the CCH.
The standard variance of bandwidth usage is 1506.4 without the
scheduler, and is 999.97 with the scheduler. As depicted in the
red curve decorated by triangle, the bandwidth usage confronts
two peaks when no scheduler is available. This would result in
packet dropping, network congestion, and unstable response.

We compared the RoR performance considering the Ky and
T, in the request tasks of 12 clients, which were data retrievals
through the Internet, which means the data retrieval is from a
data center located in outside networks. For each request task, it
includes six independent requests from one client, the package
size is 8 = 15.625 Mb x 6, then the ideal transmission time
should be s/(2 Mb/s) = 46.875 s. Note that, only partial re-
quests in the buffer queue would get responses from the CCH.

/tf_buffernl-
Jtf_nobuffer | + /tf_buffer| 4+ =
/tf_nobuffer| [J 4= + e+
/pose_bufferr ¢ # i
) Ipose_buffer| fpu+ -
o L “,"
= /pose_nobuffer + * :.’/pose_nobuffer {4+ ”
n i
a /odom_buffer| + /odom_buffer [
/odom_nobuffer § E/odom_nohuffer {IF4 = .
' 0 01 02 03

/map_buffer| + Time of Response (Second) -

-+ o
0 5 10 15 20 25
Boxplot of Time of Response (Second)

/map_nobuffer ITE X *

Fig. 9. ToR comparison between with and without buffer. (Red lines mark the
mean of ToR. The edges of the blue box are the 25th and 75th percentiles, Black
lines mark some extreme data points.)

It is because the transmission requires time, where the transmis-
sion period may be longer than the 7. In Table IV, we demon-
strate the RoR among different Tj and Ky, . Clients submitted
their optimal price of requests, which were determined by their
willingness to pay and the desired completing time of the target
data retrieval. The results validate that the RoR with scheduler
performs better, when Ky, is optimized for each task to respond
to their timeout period. In addition, willingness to pay of all
clients are uniformly distributed, because they have the same
requests.

2) Scenario 2—Heterogeneous Data Retrieval: In this sce-
nario, clients queried one type of data among map, tf, pose,l
and odom each request. The aim of the scenario is to justify the
following:

 effects of constrained bandwidth resource;

* improvements of data retrieval achieved by the proposed

buffer in the CCH;

+ complexity of the scheduler proposed in the CCH.
Therefore, we compared the 7oR and CPU load under the two
cases when there was a buffer or not, and CPU load under the
two cases whether there was a scheduler or not, respectively.
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TABLE IV
ROR COMPARISON BETWEEN WITH AND WITHOUT SCHEDULER IN THE BUFFER UNDER DIFFERENT TIMEOUT PERIOD
Timeout Period Ty (Second)
Threshold 10 20 30 40
Kin No Scheduler Scheduler No Scheduler Scheduler No Scheduler Scheduler No Scheduler Scheduler
6 0% 0% 0% 70.61% 0.39% 100% 54.17% 100%
8 0% 0% 0% 73.83% 1.67% 100% 68.06% 100%
10 0% 0% 0% 76.39% 2.78% 100% 69.44% 100%
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Fig. 10. ToR comparison among ROS topics during a day. (a) ToR comparison among /map, /odom, /pose, /tf.(b)ToR comparison among /odom,

/pose, /tf.

At first, we compared the statistical ToR of requests through
the Internet during a day when there was applying the afore-
mentioned buffer or not. As shown in Fig. 9, the average of
ToR have reduced significantly when there is a buffer that stores
the frequently queried data. Especially for messages with large
data size such as map, the median value of 70R reduces from
1.945 to 0.5424, which is much more than other three types of
messages. The other three types of messages odom, pose,
and t f reduces from 0.1675, 0.04236, and 0.03917 to 0.0928,
0.039, and 0.0323, respectively. The reason is that the large size
messages are easily affected by the Internet status. The network
bandwidth can be considered as an unconstrained resource, be-
cause the other three types of messages have very small data
size. This indicates that CCH is not necessary to process the
requests by retrieving them again in the database, since such
data have persisted in the buffer once the same request has been
responded. Time spends only on request admission and data
matching. Thus, CCH is relieved from redundant query, which
reduces the response time. We also show the 7oR performances
of different types of messages through the Internet during a day
in Fig. 10. It can be observed from Fig. 10(a) that the network
traffic is very busy from 20 o’clock to 22 o’clock, especially for
large data such as map, which leads to a long time delay. Due
to the 7oR values of message odom, pose, and t £ are too small
to see, we separately plot them in Fig. 10(b), which also shows
the longer time delay between 20 o’clock and 22 o’clock.

50 T . : - ; :
ti With Scheduler
— Without Scheduler
o 40 ¢ 1
=
= 30 ]
e
=]
=
g 200 5 1
= = =
[-* = =
O 10t 5 § 1
i . . . ; i .
0 10 20 30 40 50 60 70
Time(Second)

Fig. 11. CPU load comparison between with and without scheduler.

Second, we compared the CPU load between with and
without the scheduler. In order to get a stable result, 12 robot
clients simultaneously request 12 heterogeneous data, which
are composed of map, odom, pose, and tf, and are
demonstrated in Fig. 11. We can see the red curve shows the
CCH has higher CPU load when scheduling multi requests
around the 15th second, but it saves more computation power
for data retrievals in the database afterwards. Without the
scheduler, the blue curve shows higher CPU load around the
28th second for the congestion of multirequests. Therefore,
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the CPU load performs better as well when the scheduler is
applied.

VII. CONCLUSION

In this paper, we have introduced the design, implementa-
tion and evaluation of multi sensor data retrieval strategies for
cloud robotic systems. We proposed an architecture consists of
a data center, cloud cluster hosts and robot clients. In addi-
tion, we tackled the problem of MSDR among the host-based
framework by defining the problem into a Stackelberg game and
offered theoretical optimization analysis. Our proposed sched-
uling scheme with a data buffer are implemented in the cloud
cluster host module. In order to evaluate the proposed strategies,
we define the QoS criteria that is used in the experiments. Our
experimental results demonstrate significant improvement of
the proposed approach in terms of 7oR, RoR, bandwidth usage,
and CPU load, by adopting the proposed strategies for resource
retrieval. For future study, aiming at the optimization of data re-
quirement for dynamic robotic tasks, the scheduler will be ex-
plored concerning a prediction model for the completion time
of the required data.
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