
Autonomous Exploration of Mobile Robots
through Deep Neural Networks

Abstract The exploration problem of mobile robots aims to allow mobile robots to explore an unknown environment. We
describe an indoor exploration algorithm for mobile robots using a hierarchical structure that fuses several convolutional
neural network layers with the decision-making process. The whole system is trained end to end by taking only visual
information (RGB+D information) as input and generates a sequence of main moving direction as output so that the robot
achieves autonomous exploration ability. The robot is a Turtlebot with a Kinect mounted on it. The model is trained and
tested in a real world environment. And the training dataset is provided for download. The outputs of the test date are
compared with the human decision. We use Gaussian process latent variable model to visualize the feature map of last
convolutional layer and it proves the effectiveness of this deep convolution neural network model. we also present a novel
and lightweight deep-learning library libcnn especially for deep-learning processing of robotics tasks.

1. Introduction

1.1. Background
The ability to explore an unknown environment is a fundamental requirement for a mobile robot. It is a pre-requisite for
further tasks like rescue [1], cleaning [2, 3], navigation [4–8], etc. To achieve this task, a mobile robot should first accomplish
obstacle avoidance and then set an exploration plan to efficiently cover the unknown environment. Previous approaches
for exploration are mostly based on a probabilistic model and calculated cost maps, like the work of Stachniss [9]. The
advantage of probability-based models is that they take into consideration of uncertainty to describe the real-world cases.
However, most of these approaches only utilize geometric information without any cognitive process [10, 11]. From the
perspective of intelligence, Dealing with input directly to generate output without further processing of input information
is a kind of low-level intelligence. It will be more satisfactory if a mobile robot could imitate the way human beings deal
with such a task. Fortunately, deep learning, with its advantage in hierarchical feature extraction, provides a potential
solution for this problem.
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Figure 1. Structure of a human cerebrum, courtesy of Wikipedia.com.

1.2. Motivation and Bio-inspired Perception
Deep neural networks, especially those built from artificial neural networks (ANN) were firstly proposed by K. Fukushima
in 1980 [12]. Since the last decade, they have been adopted ubiquitously not only in robotics [13–15], but also in natural
language processing [16–19], in computer vision [20–22] and so on. When multiple processing layers are used to model a
high-level abstraction, the related approaches are generally known as deep-learning. Deep-learning is a typical bio-inspired
technology. It origins from the artificial neural network (ANN) paradigm [23], which was proposed in the 1940s by
McCulloch and Pitts. ANN tries to simulate the nervous system, where the information is preserved and transmitted
through a network structure.
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From the perspective of robotics, deep-learning should ultimately mimic a human brain and solve the perception and
decision-making problems, which has not been fully developed yet. However, deep-learning has successfully, at least in
part, solved several preliminary perception issues for robots, just like what a human brain can do. [21, 22] solved the
visual perception as object recognition. [24] solved the acoustic perception. Regarding the decision-making, a recent work
by Google DeepMind (http://www.deepmind.com) has shown that the decision process could be learned using a deep
reinforcement learning model on the Q-functions [25, 26]. Note that all these state-of-art methods tried to solve only one
aspect of perception, or with strong assumptions on the distinctiveness of the input features (e.g. pixels from a game-play).
However, a practical robotic application is usually conducted with uncertainties in observations. This requirement makes
it hard to design an effective and unified deep-network that is able to realize a complete - though maybe seemingly simple -
robotic task. Despite these considerations, we present in this paper a unified deep-network that is able to perform efficient
and human-like robotic exploration in real-time.

From biological point-of-view, both cerebrum and cerebellum are coherently comprised of nervous networks. The
perception and action functions are associated with different lobes as shown in Fig. 1, such as that the parietal lobe is
for spatial sense and navigation. The function of each aforementioned work is equivalent to that of a single lobe of the
human brain. This work tries to combine the perception and control with a single deep-network. The proposed structure
fuses CNN [27] with the decision-making process. The CNN structure is used to detect and comprehend visual features
and the fully-connected layers are for decision making. Except for that, no additional modules or algorithms are required
for the execution of the task. Overall, we present a complete solution to the autonomous exploration based on a single
network structure.

1.3. The need of deep-learning in robotics
Recently, deep learning techniques have been used for robotics navigation tasks adopted by Sermanet and Hadsell [28]
[29]. They classify the area in front of the robot for traversability. Giusti [30] also implemented a deep neural network to
recognize a forest trail.

Compared with other research fields, robotics research has particular requirements, such as the uncertainty in perception
and the demand for real-time operation [31]. Robotics research is generally task-driven, instead of precision-driven.
A prestigious computer vision recognition algorithm may result in almost perfect precision. However, the tiniest
undetectable flaw may result in failure of a complete robotic mission. Therefore, the balance of the real-time capability,
precision, and confidence of judgement is specifically required in robotics. Although there are several libraries for
deep-learning in computer vision and speech recognition, we still need an ultra-fast and reliable library for robotic
applications. As part of the contributions, we hereby present a novel deep-learning library - libcnn, which is optimized
for robotics in terms of lightweight and flexibility. It is used to support the implementation of all the related modules in
this paper.

1.4. Contributions
We address the following contributions of this paper:

• We present a novel deep-learning library especially optimized for robotic applications, including scene labelling, object
recognition, and decision-making.

• We present a deep-network solution towards human-like exploration for a mobile robot. It results in the high similarity
between the robotic and human decisions, leading to effective and efficient robotic exploration. This is the first work to
en-couple both robotic perception and control in a real environment with a single network.

• A large indoor corridor dataset with human decision label is provided for download.

• The result of a test is compared with human decision quantitatively and visualization of feature maps are shown by
GPLVM.

The remainder of the paper is organized as follows: Section 2 goes through the recent related works in deep-learning as
well as decision-making approaches, followed by a brief introduction to the proposed deep-network model in Section 3.
After that, we introduce the validation experiments of the proposed model in Section 4. We discuss the pros-and-cons and
potential use-cases of the proposed model in Section 5. At the end, we conclude the paper and provide additional reference
to related materials. The preliminary experiment of this paper was introduced in [32].

2. Related work
The deep-network usually functions as a standalone component to the system nowadays. For example, D. Maturana et. al
proposed an autonomous unmanned aerial vehicle landing system, where deep-learning is only used to classify the terrain
[14]. Additionally, deep-learning has also been used to model scene labels for each pixel, as described in [33, 34], leading
to semantic segmentation results.
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2.1. Deep learning for computer vision
Deep learning has been widely used in computer vision for recognition. Considering the receptive field of recognition,
these tasks could be categorized into patch-wise classification [35, 36] and pixel-wise classification [37, 38]. A typical
example of patch-wise classification is the image classification. Its objective is to assign a label to each image. Canonical
datasets for image classification appeared in recent years for validation of new algorithms. These datasets consist of
hand-written digits, e.g. MNIST [39], the street view house numbers, e.g. SVHN data-set [40] as well as objects, e.g.
CIFAR-10 [41]. Another example of patch-wise classification is so-called object detection, localization, and recognition. In this
task, one should first detect the possible locations of an object and then recognize it. One could refer to the ImageNet
competition for more details for this challenge 1. As for pixel-wise classification, each pixel is assigned a label of what it
describes. A typical application of pixel-wise classification is scene labelling.

In order to address the previously mentioned problems and challenges, a variety of deep neural networks were reported
in the literature. Most of these solutions took advantage of the convolutional neural network (CNN) for feature extraction.
LeNet5 [27] model was proposed for handwritten digits recognition and highly outperformed the traditional shallow
models in terms of recognition accuracy. Since then, numbers of CNN variants have been proposed for feature extraction
and representation. Network in Network [42] was a model that integrated convolution operation and multi-layer
perception for feature extraction. In our previous work [43], motivated by the need of real-time computing for robotic
tasks, we proposed a principal component analysis (PCA)-based CNN model to remove data redundancy in hidden layers,
which ensured the fast execution of a deep neural network. Besides these models, a number of regularization algorithms
have been proposed. Noticing the co-adaptation of neurons in a deep neural network, N. Srivastava et. al [44] proposed the
algorithm of Dropout. In a Dropout network, a sub-network is trained for each iteration during training while an average
model is applied when testing. Following Dropout, a more generalized algorithm, namely Drop-Connect was proposed.
Instead of dropping out nodes in a network, a drop-connect network drops out connections, i.e. weights of a neural network,
and proved that the dropping of nodes is just a special case of the proposed network. As for pixel-wise classification
problems, C. Farabet et. al [33] were the first to put CNN into pixel-wise classification tasks. However, their use of
patch-by-patch scanning approach was computational inefficient and a lot of redundant computations were involved.
In 2014, a fully convolutional neural network was proposed by J. Long et. al [34] that highly reduces the computation
redundancy and could be adapted to large size inputs. In this work, the concept of deep-network is further extended to
not only perception but also decision-making tasks.

Although these proposed approaches have been validated on typical datasets, it is still questionable how well these
methods would perform considering practical conditions. Besides, the task of recognition could only be considered as an
intermediate result considering robotic applications, and further reasoning and decision making are required. Meanwhile,
one-stroke training strategy, as widely used by computer vision researchers, may not be suitable considering robotic
applications. It is more suitable to use reinforcement learning algorithms to allow the system improve performance and
increase confidence in each decision making process.

2.2. Deep learning for decision making
Recently, Q-learning models have been adapted to deep neural networks [25]. V. Mnih et al. [26] successfully utilized CNN
with Q-learning for human-level control. The proposed approach has been validated on several famous games. Results
show that the proposed system perform well when dealing with problems with simple states. While when it comes to
problems that requires much reasoning, the performance of the system gets poorer. Besides, since the input is the screen of
a game, probability and uncertainty were not considered in that model. Tani et al. [45] proposed a model-based learning
algorithm for planning, where a 2D laser range finder was used. The model was validated with simulation.

Although the above-mentioned models put deep neural networks into applications of decision making, and Q-learning
strategy is introduced in the learning process, it was still not convincing how well deep-learning could help real world
applications. The problem of game playing is more or less in a simulated environment. When it comes to real world
applications, a lot of factors should be taken into consideration, like the definition and description of states, the introduction
of noise, etc.

3. Convolutional Neural Network for Exploration
In this section, we are going to give a brief introduction to CNN and the proposed model, which is used to generate the
control command for exploration of an indoor environment.

3.1. CNN Preliminaries
Convolutional Neural Network (CNN) is one type of hierarchical neural networks for feature extraction. By
back-propagating the gradients of loss on weights, the framework allows learning a multi-stage feature hierarchy. Each
stage of the feature hierarchy is composed of three operations: convolution, non-linear activation, and pooling.

1 http://http://www.image-net.org
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Figure 2. The proposed model which combines CNN with fully-connected neural network for robotic exploration. It consits of 3
convolution-activation-pool layers and 1 fully-connected layer.

Convolution
The convolution operation does the same as image filtering. It takes the weighted sum of pixel values in a receptive field. It
has been proved that a larger receptive field would contribute to the decreasing of the classification error. The mathematical
expression of convolution is denoted as following:

yijk = (Wi ∗ x)jk + bi (1)

where, yijk denotes the pixel value at coordinate (j, k) of the i-th output feature map. Wi denotes the i-th convolution kernel,
x is the input and bi is the i-th element of the bias vector, which corresponds to the i-th convolution kernel.

Non-linear activation
After convolution, an element-wise non-linear function is applied to the output feature maps. This is inspired by the
biological nerve system to imitate the process of stimuli transmitted by neurons. The sigmoid function s(x) = 1/(1 + e−x)
and the hyperbolic tangent function tanh(x) = (ex − e−x)/(ex + e−x) were firstly used for activation. Later a piece-wise
linear function, namely rectifier, is widely used, which is defined as follows,

f (x) = max(0, x) (2)

A neuron employing the rectifier is also called a rectified linear unit (ReLU). Due to its piece-wise linear property, the
rectifier executes faster than the previous two non-linear functions for activation.

Pooling
The pooling operation takes the maximum or average value (or a random element for stochastic pooling) in an image
patch. Pooling aims to improve the robustness of a network and reduces the effect of noise observations.

Stride
The stride parameter exists in the convolution layer as well as a pooling layer. It means the step over pixels of convolution
by patch-by-patch scanning. When stride s > 1, the output feature maps are down-sampled by a factor of s. By introducing
the stride parameter, the parameter size of the whole network is reduced.

3.2. Exploration and Confidence-based Decision Making
Our CNN model for exploration is illustrated in Fig. 2. We take only depth image as the input of our network since depth
image provides the most straightforward information of where is traversable. A traditional CNN is adapted for feature
extraction, followed by fully connected layers. A weak classifier, the softmax classifier is used for classification.

Unlike traditional computer vision applications, where each label of the output represents either an object or scene
categories, the output of our model are control commands. This is a higher level intelligence compared to the simple task
of recognition, since in order to make a decision, there is potential recognition process within the network. The resulted
model is a deep-network for both recognition and decision-making.

To make a decision and generate control commands, we study the following two approaches as comparisons:

1- For the first approach, the output commands are generated by a linear classifier. For this multi-label case, a softmax
classifier is used. To achieve this task, the discrete output control commands are sampled. For the task of object or scene
recognition, where each label represents a specific category, the problem is essentially a discrete classification problem. But
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for the exploration problem where the robot is supposed to generate control commands, we need to adapt some trade-off.
Considering the output state space, the speed and turning are both continuous. Therefore, in order to construct together
with a CNN model, this space should be discrete. However, if too few states are involved in the model, it is highly possible
that the robot would over-steer or under-steer when it comes to an intersection. While if too many discrete states are
going to be classified, it would add up the difficulty of the classification due to high computational complexity. Here
we empirically choose five discrete steps for the control command, which are “turning-full-right (0)”, “turning-half-right
(1)”, “go-straightforward (2)”, “turning-half-left (3)” and “turning-full-left (4)”. In other words, a set of pre-set rotational
velocities are defined as a discrete angular velocity space, i.e. ~Ω∗ = (ω∗0 , ω∗1 , ω∗2 (= 0), ω∗3 , ω∗4 )

T , where ωi are parameters
for discrete control.

2- For the second approach, we adopt a confidence-based decision-making strategy. We use the same softmax classifier as
previously mentioned. But unlike the first approach, which uses the winner-take-all strategy to make a decision, we use a
confidence-based approach. The output of the softmax classifier could be regarded as the probability of each label, which
could also be regarded as the agent’s confidence to make such a decision. Notice that it solves the shortcomings of the
winner-take-all strategy. For example, the "winner" possibility is 0.3 and the agent is supposed to take a right turn, while
the second highest possibility that tells the agent to go straight forward is 0.29. According to the first strategy, the agent
turns right. While the fact is that the agent is not sure whether to turn right or go straight forward. To solve this dilemma,
let c1, c2, c3, c4, c5 denote the confidence of each output label, and ωa denote the angular velocity of the of the mobile robot.
The output angular velocity is determined by

ωa =< ~Ω∗, (c1 c2 c3 c4 c5)
T > (3)

where < ·, · > is an operator of inner-product. Equation (3) is intuitive: if the robot is more confident on certain outputs, it
will tend to make the corresponding decisions. Meanwhile, it maintains a trade-off among different output decisions.

4. Experiments and Results

4.1. Platform and environment
In order to validate the effectiveness of our proposed model, we use a TurtleBot for experiments. To acquire visual inputs,
a Microsoft Kinect sensor is equipped, for which the effective sensing range is 800 mm to 4000 mm. We use the open source
software framework Robot Operating System(ROS)2 as the software platform of our system. We simply used a laptop with
an Intel Celeron processor without a graphics processing unit (GPU) for fast execution of the deep neural network. The
system is shown in Fig. 3(a). The test environment we used is an indoor environment with corridors insides a building, as
shown in Fig. 3(b).

(a) Hardware and platform (b) Sample test environment

Figure 3. Platform and sample test environment

4.2. Human Instruction and Data Gathering
In our experiment, we use a set of indoor depth datasets for training. The ground-truth output is instructed by a human
operator. To be more specific, during the training process, an instructor operates the mobile robot to explore an unknown
indoor environment. By first recording the depth images received by Kinect and the control commands published by the
instructor and then finding the corresponding depth and control commands, we obtain a set of training examples, where

2 http://www.ros.org
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the inputs are depth image and desired outputs are the corresponding control commands. The latter includes speed and
steering. Here we point out that the control commands are sampled and classified to 5 categories: one for going straight
forward, two for turning left with different steering angles, and two for turning right, which are corresponding to the
defined control labels.

4.3. Network Configuration
The original depth image size from Kinect is 640× 480. In our experiment, the input depth image is first down-sampled
to 1/4 of the original size, i.e. 160× 120. This proves to largely reduce the computational cost without introducing many
misoperations. The down-sampled depth image is put into a 3-stage “convolution + activation + pooling” cycles, followed
by one fully connected layer for feature extraction. The first convolution layer uses 32 convolutional kernels of size 5× 5,
followed by a ReLu layer and a 2× 2 pooling layer with stride 2. The second stage of convolution + activation + pooling
is the same as the first stage. For the third stage, 64 convolutional kernels of size 5× 5 are used, with no change of the
ReLu layer and pooling layer. This results in 64 feature maps of size 20× 15. The fully-connected layer is made up of 5
nodes. The last layer represents the scoring of each output state. The control commands consist of 5 states: one for going
straightforward, two for turning left and two for turning right as previously mentioned. The final decision is calculated by
applying the softmax function to the scores of the 5 possible outputs.

4.4. Sample Results and Evaluation
We sampled 1104 depth images from the indoor dataset where different control categories are almost equally distributed
after selection. We use 750 images for training and 354 images for testing. For detail of the dataset, please refer to the last
section.
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Figure 4. Confusion matrix on the test set. The green-to-red color map indicates the accuracy of inference. Note that the outcome is
equivalent to a �ve-labels classi�cation problem. The result demonstrates outstanding performance of the proposed structure as well as the
libcnn implementation.

From Fig. 4, we could see that the overall accuracy of the test set is 80.2%. The class accuracy is 79.76%, i.e. the mean
accuracy of each class. Furthermore, regarding misclassification, there is quite low chance for our system to generate
totally opposite decision, e.g. to misclassify “left” as “right”. A large portion of misclassifications could be misclassifying a
“turn-half-left” to a “turn-full-left” or “go-straightforward”. This further proves the effectiveness of the confidence model,
in terms of the error distributions.

To evaluate the similarity of the agent’s decision and human decision, we evaluate our approach in the following aspect:
the consistency of robot-generated command and reference human-operated command.

Fig. 5 shows the decisions made by human and robot. In this figure, we plot the angular velocity over time, where positive
values mean turning left and negative means turning right. We set linear velocity constant. Here we show two cases,
where in the first there are specific turnings while in the second case there are junctions and the environment is much
complicated. We sampled 500 points of the curve of human decision and robot decision and calculated the mean absolute

6 www.intechopen.com



difference between the two cases. In the first case, the mean absolute difference is 0.1114 rad/s. In the second case, the
value is 0.1408 rad/s. These statistics, together with the figure, show that the robot is able to highly imitate the decision
a human makes. Furthermore, the shift in time of making a turning decision is largely due to the sensitive range of the
Kinect sensor, making the robot only able to make a turning decision closely in front of an obstacle, while human beings
are able to foresee this.
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Figure 5. Comparison of human decision and robot decision. 500 points of the curve of human decision and robot decision are collected.
The mean absolute di�erence between the two cases are collected. In the �rst case, the mean absolute di�erence is 0.1114 rad/s. In the
second case, the value is 0.1408 rad/s.

For the test time, the mean time from receiving the input to generating the output command is 247ms, with variance 12ms.
Note that we get this real-time performance without using GPU for fast execution of the deep network.

5. Discussion and Analysis
In our model, CNN is used to enable a mobile robot to learn a feature extraction strategy. Although the model is trained
in a supervised way, the use of CNN avoids the calculation of hand-crafted features, which allows the agent better adapt
to different kinds of environments. Besides, the hierarchical structure of CNN maps the input to a higher dimension and
enables the successful application of a linear classifier.

5.1. Visualization of feature maps
In order to demonstrate how the trained network functions as an artificial brain, we try to visualize the feature maps
generated from the last layer of Fig. 2. The second-last layer represents the feature maps, which are further categorized by
the last fully connected layer. The outcome leads to the selection of control commands. However, it is not easy to visualize
these feature maps.

G := {gi|gi = NN(Ii)}
where NN is the function of the deep-network and Ii is the input depth image with index i. gi is the corresponding
feature map of the input i. Note that each gi is with dimension of gi ∈ R19200. To solve this problem, we adopt a latent
variable Gaussian Process model (GPLVM), more specifically, with Spike and Slab Gaussian Process Latent Variable Models
(SSGPLVM), which was recently proposed by Dai et al. [46]. We project gi into a lower dimensional space 3. After that,
a pair of distinguished dimensions can be visualized as R2. The final visualization result is shown as Fig. 6. The legend
indicates the label of the generated control commands, i.e. 0 refers to that the robot will make a full-right turn; 4 indicates
a full-left turn and 2 refers to a straightforward motion, following the definitions in Section 3. The gray level of the
gray-scale background indicates the variance of the training data. Note that the plot is a sampled result, due to a large
number of training data. We could see that separating from the center, there are more green and yellow dots on the right,
whereas more red and orange dots on the left. This distribution indicates that the left or right control output are slackly
distinguished. The blue dots are all over the space, which indicates that the straightforward motion is universal under
heterogeneous image inputs. This behaviour was detectable during the experiments as well.

3 In this work, we empirically choose the projected latent space as R6.
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Figure 6. Visualization of 19200-dimensional feature maps of the training data on a two-dimensional plane, through GPLVM. More green
and yellow dots are on the right and more red and orange dots are on the left. This distribution indicates that the left or right control
output are slackly distinguished.

5.2. Feasibility to mimic humans for further robotic applications
As for the experiment, the exploration behaviour is in an active and forward-computing way, which means that the agent
is self-conscious. Unlike geometric models that deal with distance information, our model is trained by human instruction,
and it highly imitates human brain in the way to make a decision. Our approach performs perfectly for obstacle avoidance.
Traditional obstacle avoidance algorithms require a local map or a cost map to be built before making a decision, which
adds to the additional computational cost. While in our model, only the visual input is needed and obstacle avoidance task
is achieved automatically. This is much like the stress-reaction of human beings. This further indicates that our approach
simulates a higher level intelligence.

By further integrated with localization and navigation systems, our model has the potential to become a complete indoor
navigation system. A series of tasks, such as visual localization, visual homing [8], exploration, and path-following, could
be achieved. We aim to fulfil these tasks all in a human-like way in the near future.

6. Conclusion and Future Work
In this paper, we proposed a human-like indoor exploration algorithm based on a single deep-network structure
and accomplished real-world experiments in typical indoor environments. Experiments show that our system could
successfully manage obstacle avoidance. Comparisons between robot decisions and human decisions showed high
similarity. Nevertheless, there are still some limitations, like the offline training strategy is not mostly suitable for robotic
applications and a discrete classification may not be precise enough for a continuous state space of the decisions. For
the next steps, we will further en-couple on-line learning algorithms with libcnn and further extend the target space from
discrete space to continuous space.

7. Materials
Along with this submission, we provide the following additional materials for further bench-marking from the community:

• A novel CNN library named libcnn is proposed. It emphasizes real-time capability and robotic related applications. It
can be obtained at https://github.com/libcnn/libcnn

• The dataset with RGB-D input and human operations for exploration is available at
http://ram-lab.com/file/rgbd-human-explore.tar.gz (560 MB). The dataset contains 1104 synchronized RGB-D and joystick
information at http://ram-lab.com/file/lmdb_source_data.tar.gz (4 MB). Further detail is as follows:
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Topic Name msg Type Description

/camera/depth/image_raw sensor_msgs/Image Depth images
/camara/rgb/image_color sensor_msgs/Image Colour images

/joy sensor_msgs/Joy Joystick commands
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