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Abstract. Constrained by on-board resource, most of the low-cost
robots could not autonomously navigate in unknown environments. In
the latest years, cloud computing and storage has been developing
rapidly, making it possible to offload parts of visual SLAM process-
ing to a server. However, most of the cloud-based vSLAM frameworks
are not suitable or fully tested for the applications of poor-equipped
agents. In this paper, we describe an online localization service on a novel
cloud-based framework, where the expensive map storage and global fea-
ture matching are provided as a service to agents. It enables a scenario
that only sensor data collection is executed on agents, while the cloud
aids the agents to localize and navigate. At the end, we evaluate the
localization service quantitatively and qualitatively. The results indicate
that the proposed cloud framework can fit the requirement of real-time
applications.
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1 Introduction

1.1 Motivation

Simultaneous Localization and Mapping (SLAM) jointly estimates the state of
the robot and the map of environments. In the past few decades, SLAM, espe-
cially visual SLAM (vSLAM), has been an active research domain and many
vSLAM algorithms have been presented to achieved great accuracy and robust-
ness, such as [1–3]. However, vSLAM is both data intensive and computation
intensive. In practical applications, the on-board resource is limited for service
robots. For the applications such as augmented and virtual reality, it is hard to
meet the computation and memory requirements.
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The rapid development of network technology and the availability of com-
mercial Internet servers make the solution to this dilemma envisaged. The cloud
provides high-bandwidth connections, massive storage, data management, and
computation. Regarding vSLAM, a cloud is able to process the steps such as
local or global bundle adjustment, map fusion, and loop detection. Besides, the
cloud can be understood as a center for knowledge sharing, giving robots the
access to infrastructure, platform, software and data. For example, traditionally,
each robot would have to explore and build its own map in large environments.
But now, we use the cloud to save a live, global map of the large environment.
If a new robot is introduced to the same environment, it will reuse the existing
map without exploration effort.

There are few works with a lightweight and low-cost approach targeting com-
plete SLAM applications. Therefore, it is worthwhile to investigate a proper solu-
tion for lightweight, low-cost robots navigation. To this end, we design a robot
with a simple visual-inertial sensor, an ARM7 processor, and WiFi connection.

1.2 Contribution

In this paper, we build on the ORB-SLAM2 system (monocular part) [3], the
place recognition work of DBoW2 [4] and OpenRestyTM platform1, to design a
cloud-based framework providing a localization service for low-cost robots. This
service enables a robot with a smartphone-class processor to reuse maps and
locate itself in environments. Compared with standard SLAM, it reduces much
computation complexity. The contributions of this paper are:

1. We proposed a novel cloud-based framework which is able to provide different
services and has two important features:
(a) Secure: only authorized robots with right IP and password are allowed to

connect to the cloud.
(b) Extensibility: services are implemented with C/CPP and Lua scripts.

Researchers are allowed to develop new applications freely.
2. We developed a lightweight localization service for the low-cost robots aided

by the cloud. This service could reach real-time rate even though the band-
width is limited.

1.3 Organization

This paper is organized into the following sections. Related work is described
in Sect. 2. An overview of the system is introduced in Sect. 3, and details of our
online localization service and framework are presented in Sect. 4, followed by
the experiments shown in Sect. 5. Conclusion and future work are presented in
Sect. 6.

1 OpenResty: a registered trademark owned by OpenResty Inc. https://openresty.org.

https://openresty.org
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2 Related Work

2.1 Low-Cost Localization Approaches

VSLAM is the primary approach for localization with low-cost sensors. An
overview of SLAM was given by [5]. The most successful vSLAM systems cur-
rently in use are DSO [1] and ORB-SLAM [3,6]. DSO is a sparse and direct app-
roach to monocular visual odometry, jointly optimizing the full likelihood for all
involved model parameters to minimize the photometric error. OBB-SLAM is a
feature-based monocular SLAM, which is able to close loops and reuse its map
to achieve zero-drift localization in already mapped areas. However, ubiquitous
optimization in these systems results in a high requirement for computational
cost, which exceeds the capability of many mobile robots’ processors.

Visible light communication (VLC) is a type of wireless communication tech-
nique and has many advantages such as low-cost and meeting the requirements
of both illumination and communication. Researchers have tried to use VLC to
deal with low-cost localization problem from a different perspective. In [7], Liu
et al. discussed the feasibility of achieving accurate localization and preliminar-
ily introduced a Gaussian Process to model the environmental light. By fusing
the previous works [8,9], they demonstrated a low-cost VLC-based localization
system in [10]. However, compared with vision version, VLC-based localization
is only available in known places and limited by DoF. Fusing these techniques
might overcome the limitations of each other [11].

2.2 Place Recognition Techniques

A survey by Williams et al. [12] compared the performance of appearance-based,
map to map, and image to image methods for place recognition. Within appear-
ance based approaches, a typical one is the FAB-MAP system [13]. It detects
loops with an omnidirectional camera, obtaining great accuracy in long distance,
but its robustness decreases when the images depict very similar structures for
a long time. In contrast to the FAB-MAP, DBoW2 [4] uses bags of binary words
obtained from BRIEF descriptors along with the efficient FAST feature detector
to build a vocabulary tree offline. The work of Raulmur in [14] demonstrated
DBoW2 to be very accurate and efficient.

2.3 Cloud-Based Framework

Based on Hadoop with ROS [18] as the master that manages all communications,
DAvinCi was proposed in [19]. The goal of this architecture is to offload data-
and computation-intensive tasks from the on-board resources on the robots to
a backend cluster system. For proving its effectiveness, a parallel implementa-
tion on DAvinCi of Fast-SLAM was presented. However, the authors did not
consider the data compression in any environment. They might face difficulties
in transferring ROS message involving large data between the server and the
robots.
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The RoboEarth project [20] aims to develop a worldwide, open-source plat-
form that allows any robot with a network connection to generate, share and
reuse data. Later Rapyuta, an open source Platform-as-a-Service (PaaS) frame-
work designed specifically for scalable robotic applications, was presented as the
RoboEarth Cloud Engine in [21]. As a part of the RoboEarth project, it provides
access to RoboEarth’s knowledge repository, enabling the sharing of data and
skills among robots. Based on Rapyuta, the author of [22] developed a parallel
and dense visual odometry algorithm for collaborative 3D mapping on low-cost
robots. Although many benefits of these frameworks are mentioned previously,
there will be some potential drawbacks and challenges. In order to simplify the
problem, most of the frameworks assumed that the online resource is unlim-
ited. Actually, most resources in the cloud such as network bandwidth and CPU
occupancy are limited.

Considering the real constraints, in [23], Riazuelo et al. presented the C2TAM
framework for collaborative mapping in on multi-agents and discussed a solution
about how to use the cloud’s storage and computation resources properly. Fur-
thermore, the RTAB-Map memory management approach [24] might be a good
method to handle larger map’s size in long-term and large-scale online map-
ping. In addition, fierce resource competition in multi-agents systems usually
makes the bandwidth limited. Resource allocations strategies like [25] should be
introduced to cope with this problem.

3 System Design

An overview of the cloud robotics system is illustrated in Fig. 1. The system
consists of two components: a server (runs a cloud-based framework) and mul-
tiple robots. Generally, the simple processes like sensor data collection and data
compression run on the robots. The computation- or memory-intensive tasks run
on the server, which can concurrently handle a series of requests from different
robots at the same time.

Fig. 1. An overview of the cloud robotics system
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Considering hardware cost, real-time limitation, data I/O, network band-
width, and computational requirements, a specific instance of our framework is
described as following:

3.1 Robot (Client)

The low-cost robot is shown in Fig. 2. It equips with a single board computer
(OrangePi Plus22), a visual-inertial sensor(LoitorTM ), and a WiFi module,
uploading image features to the server to request its position. The details are
shown in Fig. 3.

Fig. 2. The low-cost robot consists of a single board computer (<$40) OrangePi Plus2
and a visual-inertial sensor (<$90) LoitorTM

OrangePi Plus2

CPU

Memory

OS

Size

Weight

Quad-core H3 Coretex-A7 processor

2GB DDR3

Lubuntu

108mm x 67mm

83g

Loitor

Camera

Resolution

IMU

Size

Global shutter |  24-65fps 

320x240 | 640x480 | 752x480

MPU-6050 | 200fps

118mm x 30mm

Fig. 3. Details of OrangePi Plus2 and Loitor

3.2 Server

The server is a high-performance computer, running a cloud-based framework.
It should have 5 main components: Interface, Shared Memory, File Areas, Core
Function, and Database. If the size of some messages exceeds 100 Kbytes (called
large messages), they will be uploaded from the robots through HTTP directly
and then saved in the File Areas part. Other messages (called small messages)
are sent through WebSocket by robots, decoded by the Interface part and then
saved in the Shared Memory part.
2 OrangePi Plus2: http://www.orangepi.org/orangepiplus2.

http://www.orangepi.org/orangepiplus2
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1. Interface: It sets WebSocket (small messages) and HTTP (large messages)
as the communication protocol and decodes the small messages from String
into JavaScript Object Notation (JSON)3 format. It is also responsible for
the connection to the robots.

2. Shared Memory: They are blocks of RAM that store messages (small) and
can be accessed by the Interface part and Core Function part.

3. File Areas: They are areas in the hard disks that store image features posted
from robots and can be accessed by Core Function part.

4. Core Function: They are mutually independent processes, providing local-
ization services for robots. Their input is the image features and output is
robots’ position.

5. Database: It stores a feature database based on DBoW2 module and a tra-
jectory database.

In order to ensure that the server could provide secure, stable and elastic
compute services, we design the server with 4 additional parts: a firewall, a
manager, a monitor and a scale modifier. The main function of each part is
described below:

1. Firewall: It protects the server according to the secure rules, including open
ports, access control lists and packet filter, etc.

2. Manager: It distributes data and tasks to Storage Areas and Core Functions
according to different requests.

3. Monitor: It monitors and visualizes the server’s states including CPUs and
usage of the Storage Areas, the Core Functions and bandwidth, etc. Once
some events get detected, the monitor will inform the scale modifier.

4. Scale Modifier: It scales the capacity of CPUs and memory up or down based
on the online application’s real-time demands.

After requests pass through the firewall, the manager distributes the requests
to the proper Storage Areas and Core Functions. For example, it will distribute
more resources to a complex request than normal ones. When the monitor detects
errors, it will alter the scale modifier. Finally, the scale modifier will modify the
scale of the abnormal parts.

4 Online Localization Service and Framework

In this section, we will describe the details of executing the localization service
(Sects. 4.1 and 4.2) and building up the framework (Sect. 4.3).

3 JSON: a lightweight data-interchange that is easy for humans to read and write.
http://www.json.org.

http://www.json.org
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NginX Lua Localization Service

Lua VM

Online phase

 Offline phase

data

result

Shared 

Memory

Position of keyframes

ORB features of keyframes

Feature Database

Trajectory Database

A reconstruction by Monocular 

ORB-SLAM  in MH_05_difficult

Database

command

Files

Fig. 4. Pipeline of the online localization service (top) and the off-line database creation
(bottom)

4.1 Online Phase

Figure 4 introduces the pipeline of the online localization service and building
process of the database. In the initialization step, the robot should firstly connect
to the server. Once this connection is established, the robot starts capturing
images and then uploading them to the server.

After receiving the new message, Lua virtual machine on the server will
decode the command-type messages into JSON and save them in the Shared
Memory.

The other part, called Core Function, runs simultaneously and provides local-
ization service for the robot. Assuming that if some images captured by different
cameras are matching with high scores, these cameras can be considered at the
same place roughly. This assumption is used in the relocalization and loop detec-
tion step of some vSLAM systems. Each image is extracted ORB features and
then searched its similarity in the feature database by using the bags of words
place recognition module based on DBoW2 [4]. Finally, the robot’s global local-
ization will be retrieved in the trajectory databased and returned.

4.2 Offline Phase

Maps of large environments can be created by the Visual Monocular ORB-SLAM
system. But different from [3], we only save the keyframes and disregard the 3D
map points, co-visibility graphs, and essential graphs. The main reason is that
after optimization, keyframes could reconstruct an environment in some extent.
For each keyframe Ki, it stores:
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1. The camera pose Ti
w, which is a rigid body transformation between the world

to the camera coordinate system.
2. ORB features extracted in the keyframe.

The composition of the feature databases and trajectory databases are shown
in Fig. 4. The visual vocabulary tree is created offline by discretizing all the
descriptors of keyframes into K visual words. The feature database consists of
vocabulary trees for different environments, direct indexes, and inverse indexes.
The indexes are used for quick queries and feature comparisons. The trajectory
database stores the pose and the number of each keyframe.

4.3 Framework

In this section, we will explain the main tasks and components of our framework.
The framework runs on the server, providing configuration files, dependencies as
well as independent environments for different robotic applications.

The framework is built on OpenRestyTM , which is a powerful web platform
integrates Nginx core, Lua libraries, and LuaJIT. Researchers are allowed to
implement web services on it with Lua scripts, Nginx C modules, and C/CPP
programming languages. Compared with huge overhead of ROS, OpenRestyTM

is capable of handling 10K to 1000K connections on a single server.

Communication Protocol. The protocol defines the specification for message
transmitting behaviors. Shown in Fig. 4, messages transmitted between robots
and server could be classified into three types: command, data, and result. In
every round, the robot sends command and data to the server and waits for the
results. After establishing the connection, a Lua virtual machine is created by
the server. The following computation tasks are completely processed in the Lua
VM.

The command-type and result-type messages should be firstly encoded into
JSON-type string format. JSON is a common communication format in web
server, and many libraries available for JSON have been developed for various
programming languages. We use the RapidJSON4 to encode or decode the
messages. But these JSON-type strings might be a burden to network bandwidth,
so they will be further compressed before sending.

WebSocket is used to send command-type and result-type messages, which
provides a full duplex, constant communication between robots and cloud in the
framework. Compared with HTTP, WebSocket-based transmission helps save
bandwidth resources hundreds of times under high concurrent connection. It
also helps reduce 70% network delay compared with the HTTP long polling
[26]. So it is efficient to send small messages through WebSocket.

Large messages will potentially consume plenty of bandwidth resources. Some
results in [21] demonstrated that the delay and packet loss will increase if the

4 RapidJSON: a fast JSON parser/generator for C++. http://rapidjson.org.

http://rapidjson.org
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payload length of messages increases. At this point, the WebSocket protocol is
not suitable for large messages transmission.

For instance, in the localization service or other complex services, robots
need to offload some data like features or point clouds for storage or compu-
tation. These data might be larger than 100 Kbytes. Converting these data to
JSON-type string format would result in an even larger message size because a
float number might be transformed into multiple chars. As discussed above, the
increasing pay length will limit the transmission of the messages. Therefore, we
use HTTP to post files to the server instead of encoding them into String so
that this limitation is avoided.

Connection Established

(Lua VM Created)

Request

Response

Connection Closed

(Lua VM Released)

Fig. 5. The life of a Lua VM. When the connection is established, the Lua VM is
created. The robotic service will be provided in a request-response way. Once the
connection is closed, the Lua VM will be released

Isolated Computing Environment. When the connection between a robot
and the server is established, a Lua VM is created to be used as an isolated
environment. An isolated environment means that both memory and services
are only provided for this robot and will not interfered with by other robots.

After creating a Lua VM, the service starts providing. In the next step, the
robot will continuously send messages to the server and wait for the results. If
the robot does not need services anymore (after sending a quit-type command),
this connection will be closed and the Lua VM will be released simultaneously.
The life length of Lua VM is as the same to the connection, which is shown in
Fig. 5.

5 Experiment

In this section, we implemented the online localization service based on the
cloud-based framework on the robot and ran the monocular ORB-SLAM sys-
tem [3] on the same platform (called on-board ORB-SLAM). We compared the
computational and memory cost of these two algorithms to demonstrate the
feasibility and features of our proposed service.
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5.1 Experiment Process

The cloud-based framework runs on a laptop (Intel Core i5, 2.5 GHz, 4 GB
RAM). Both the laptop and the robot have a wireless connection to the campus
Local Area Network. In this experiment, the server only handles a single request
at the same time.

EuRoC dataset [27] contains 11 sequences recorded from a micro aerial vehicle
(MAV), flying around two different rooms and an industrial environment. The
sequences are classified as easy,medium, difficult depending on MAV’s speed,
illumination, and scene texture. All the images were captured at 640 × 480.

In the offline phase, we ran the monocular ORB-SLAM in MH 01 easy to
MH 05 difficult and then built up the databases with keyframes. Databases were
saved on the server. In the online phase, we used HTTP to post new images to the
server and used WebSocket to send the command-type and result-type messages
(defined in Fig. 6).

There exist some feature matching errors because of the visual overlap
between images. We firstly take 5 candidate images with a high score and then
choose the most similar one.

What’s more, we compared our localization service with the Monocular ORB-
SLAM system [3]. We ran the ORB-SLAM system on the robot without con-
necting to the server and recorded the cost.

Fig. 6. Definitions of command-type and result-type messages in the localization ser-
vice

5.2 Results

Cost and Bandwidth Analysis. Figure 7 shows the bandwidth required by
the algorithm in MH 05 difficult. The red lines show the required bandwidth for
the data from the client to the server, which are recorded every 0.5 s. Images
are dominant in the data transmission so the command-type and result-type
messages are not displayed. Note that the size of images determines the height
of redlines.

The average bandwidth required was around 1.80 MB/s, which is less than
the maximum available in a wireless connection (6 MB/s). The data transmission
did not exceed the capacity of the current network.

Figure 8 shows a double-axis figure which compares the computational cost
per frame of two algorithms (the localization service and the on-board ORB-
SLAM) in MH 05 difficult. The average computational time of the on-board
ORB-SLAM is around 332 ms/frame, while the time of our localization service
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Fig. 7. Data flow produced by the localization service in MH 05 difficult of 2273 frames.
Redline stands for images uploaded from client to the server. Compared with images,
the command-type and result-type messages are small so they are not displayed. Each
peak is recorded every 0.5 s. The average data flow for this localization service was
1.80 MB/s, below the usual wireless bandwidth which is 6 MB/s (Color figure online)

Fig. 8. A comparison of computational cost between the localization service and the
on-board ORB-SLAM. The purple curve stands for the increasing map size caused by
the ORB-SLAM, bringing memory burden to the robot (Color figure online)

Fig. 9. Estimated trajectory in MH 04 difficult and MH 05 difficult. Note that the
estimated trajectory in MH 04 difficult has less error matching

is around 57 ms/frame. Loading the vocabulary tree and saving the map are
required by the ORB-SLAM, bringing extra memory and computational cost
to the robot. Especially in long-term exploration, the increasing map size and
optimization may exceed the robot’s capability. So we consider that our proposed
system is more suitable for low-cost robots.
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Localization in the EuRoC Dataset. We choose MH 01 easy to
MH 05 difficult to test our localization service. Figure 9 shows two examples of
the estimated trajectory in MH 04 difficult and MH 05 difficult. We found that
our proposed algorithm performed more accurate in MH 04 difficult than other
sequences. Because the keyframes in MH 04 difficult have sparse distribution
and less visual overlap, resulting in fewer error matchings.

6 Conclusion and Future Work

In this paper, we have presented a novel cloud-based framework that is built
on WebSocket and OpenRestyTM , introduced its key components, and imple-
mented an online localization service on it. Compared with other cloud robotics
frameworks, it does not rely on ROS, send messages directly and is suitable for
computation- and memory-intensive tasks. The localization service enables low-
cost robots to relocalize themselves by reusing maps created by SLAM system.
This service is able to handle each request within 60 ms. But influenced by the
transmission delay, most of the time is used to wait for the new requests. So the
transmission delay will be a bottleneck to our cloud-based application. Further-
more, based on the DBoW2 module, our localization service might cause some
feature matching errors, which might limit the accuracy of our service. Finally,
we ran a monocular ORB-SLAM on the robot (Cortex-A7 processor) and showed
that our system is more suitable for low-cost robots.

The accuracy of the location service can be improved by using a dense- or
semi-dense type SLAM system to reconstruct an environment, implementing
an Inertial Measurement Unit (IMU) or a lightweight visual odometry on the
robot to estimate its movement at a short time. In this system, the server and
the robot are connected with WiFi, but WiFi is sometimes unstable and causes
some transmission delay or mistakes. In addition, the framework is not able to
handle requests from multiple robots at the same time. In the next step, we plan
to take these factors into consideration to improve our system.
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2. Engel, J., Schöps, T., Cremers, D.: LSD-SLAM: large-scale direct monocu-
lar SLAM. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV
2014. LNCS, vol. 8690, pp. 834–849. Springer, Cham (2014). doi:10.1007/
978-3-319-10605-2 54

3. Mur-Artal, R., Tardos, J.D.: ORB-SLAM2: an open-source SLAM system for
monocular, stereo and RGB-D cameras. arXiv preprint arXiv:1610.06475 (2016)
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