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Abstract. How to autonomous locate a robot quickly and accurately in
dynamic environments is a primary problem for reliable robot navigation.
Monocular visual localization combined with deep learning has gained
incredible results. However, the features extracted from deep learning
are of huge dimensions and the matching algorithm is complex. How
to reduce dimensions with precise localization is one of the difficulties.
This paper presents a novel approach for robot localization by training
in dynamic environments in a large scale. We extracted features from
AlexNet and reduced dimensions of features with IPCA, and what’s
more, we reduced ambiguities with kernel method, normalization and
morphology processing to matching matrix. Finally, we detected best
matching sequence online in dynamic environments across seasons. Our
localization algorithm can locate robots quickly with high accuracy.

1 Introduction

Where am I? It’s the primary problem in reliable robot navigation to locate
quickly and accurately in changing environments. Such changes come from many
sources including dynamic objects, varying weather and season shifts. An intel-
ligent robot must be equipped with the ability to adapt to these changes. It
doesn’t conform to reality that automatic driving cars can only run in the trained
scenes. So it’s essential to express the scene images without the influence of sub-
stantial changes. Over the past few years, various types of features have been
investigate for localization [2,7,20,27]. Image descriptors can be divided into
feature based and holistic image descriptor. Features based descriptors play an
important role in Computer Vision. Up to now, several hand-crafted features
have gained some success [3,16,23,30]. However, the robots often fail to locate
themselves in dynamic environments with these hand-crafted feature descriptors.

Holistic images descriptor express one image according to invariant features.
Deep-learning has dramatically changed the overnight. It greatly boosted the
development of visual perception, object detection and speech recognition [29].
Recent results indicated that the generic descriptors extracted from the convo-
lutional neural networks are very powerful [26].
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In 2012, CNNs got incredible accuracy on the AlexNet Large Scale Visual
Recognition Challenge (ILSVRC) [10]. It suggested that features extracted from
CNNs significantly outperformed hand-crafted features on classification. They
trained a large CNN named AlexNet with 1.2 million labeled images. Because
the images are classified according to the features extracted from AlexNet, we
can also locate robots based on these features. [8] indicated that features from
mid-layer of CNNs can remove dataset bias more efficiently. [28] compared the
performance of features from different layers. Their results showed that features
from the middle layers in the ConvNet hierarchy exhibited robustness against
appearance changes induced by the time of day, seasons, or weather conditions.
Features from Conv3 layer performs reasonably well in terms of appearance
changes.

Nevertheless, the main obstacle of CNNs features is expensive computational
costs and memory resources, which is a big challenge for real-time performance.
[1] compressed the redundant data of CNN features into a tractable number of
bits. The final descriptor is reduced by applying simple compression and bina-
rization techniques for fast matching using the Hamming distance. It’s necessary
to reduce the dimensions of these vectors. Compression means losing some infor-
mation. However, we can keep important relationship among data as much as
possible. We realize this purpose through Incremental PCA (Principal Compo-
nent Analysis) that used widely in data analysis [31].

In this paper, we present a novel algorithm to locate a robot in dynamic
environments across seasons. The main contributions of this paper are: (1) We
proposed a novel localization system in dynamic environments via dimensions
reduction of deep learning features. (2) We reduced the dimensions of features
extracted from AlexNet. It can not only quicken computing speed but also reduce
confusing matching from datasets. (3) Instead of complex data association graph,
we found best matching sequence online with morphology processing to matching
matrix.

2 Related Work

2.1 Feature Extraction

It’s a big challenge to express a scene that changing significantly, shown in Fig. 1.
The recent literature proposed a variety of approaches to address the challenge
of this field [5,6,18–22]. As we all know, CNNs got incredible accuracy on the
AlexNet Large Scale Visual Recognition Challenge (ILSVRC) in 2012 [10]. [8–
10,25,26] proved that ConvNets have been demonstrated outperforms traditional
hand-crafted features [3,3,16,23]. This network consists of five convolutional
layers followed by three fully connected layers and a soft-max layer. It was pre-
trained with 1.2 million labeled images. The images are classified according to
the features extracted from AlexNet. The output of each individual layer can
be used as a global image descriptor. We can also match images based on these
features and then locate robots. [8] indicated that features from mid-layer of
CNNs can remove dataset bias more efficiently. [28] compared the performance
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of different layers features. Their results showed that features from the middle
layers in the ConvNet hierarchy exhibit robustness against appearance changes
induced by the time of day, seasons, or weather conditions. Features from Conv3
layer performed reasonably well in terms of extream appearance changes. The
vector dimensions of different layers in AlexNet ConvNets are listed in Table 1.

(a) Rainy night (b) Rainy daytime (c) Shadows of trees and
buildings and others

(d) Moving objects (e) Dusk (f) Light outsides

Fig. 1. Dynamic environments including dynamic objects, varying weather and season
shifts.

Fig. 2. Outline illustration of dynamic environments localization via dimensions reduc-
tion of deep learning features. Features of training images and online images are all
extracted from AlexNet.
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[28] proved that features from Conv3 layer performed reasonably well in terms
of extream appearance changes. Besides, [28] also pointed that fc6 and fc7 out-
perform the rest layer in terms of viewpoint changes. However, fc6 and fc7 fail
completely when appearance changes.

The dimensions of Conv3 are 64896, which means that one image is shown as
a 64896 dimensions vector. Online localization will receive images from camera
continuously. There is no doubt that a large number of vectors math opera-
tion is time-consuming. The different features contained in DCNN are initially
returned in a float format. With the aim of facilitating a subsequent binarization,
[1] cast these features into a normalized 8-bit integer format. Then a matching
matrix is computed by matching all the binary features using the Hamming dis-
tance. Their results showed that compression of features can reduce the 99.59%
redundancy of their descriptors, while precision is only decreased in about 2%.
Besides, their binarization of features allowed using the Hamming distance, that
also represented a speedup to match locations.

2.2 Image Matching

Image matching is another challenge after features extraction. By the way, image
matching means place recognition in robot localization domain. There is no
doubt that the robot’s knowledge of the world must be stored as a map, to which
the current observation is compared. [17] pointed out that the map framework
differs depending on visual sensors and what type of place recognition is being
performed. They can be divided into pure image retrieval, topological maps, and
topological-metric maps. Pure image retrieval only stores appearance informa-
tion about each place in the environment with no associated position informa-
tion, just like Chow-Liu tree used in FAB-MAP [7]. FAB-MAP [7] described a
probabilistic approach to the problem of matching images and map augment.
They used vector-based descriptors like SURF jointly with bags-of-words. This
paper learned a generative model of place appearance. They constructed a Chow-
Liu tree [4] to capture the co-occurrence statistics of the visual words. Chow-Liu
tree is composed of nodes and edges. Mutual information between variables is
shown by the thickness of tree’s edges. Each node in the graph corresponds to a
bag-of-words representation that converted from input sensory data. FAB-MAP
was successful in detecting large portions of loop closures in challenging outdoor
environments. But results of [21] show that in datasets over seasons only a few
correct matches are found by OpenFABMAP2 due to that the hand-crafted fea-
ture descriptors are not repeatable. Paper [21] formulated image matching as
a minimum cost flow problem in a data association graph to effectively exploit
sequence information. They locate vehicle through Minimum Cost Flow. Their
method worked well in dynamic scenes. [12] presented a Markov semi-supervised
clustering approach and its application in topological map extraction. As for
incremental mapping, slam, and navigation tasks, the approach can be adapted
accordingly.

SeqSLAM [20] framed the image recognition problem as one of finding all
the templates within local neighborhoods that are the best matching for the
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current image. It is easy to implement. However, the algorithm of [20] can easily
be affected by robot speed. This constraint limits the applications for long-time
localization. [24] proved that place recognition performance improves if only the
most informative features from each image are used. [14] described a lightweight
novel scene recognition method using an adaptive descriptor, which is based
on color features and geometric information. [13] presented a scene recognition
approach with omnidirectional vision for topological map using lightweight adap-
tive descriptors. [11] improved place recognition with a reduced feature set. [15]
proposed a generic framework for recognition and clustering problem using a
non-parametric Dirichlet hierarchical model, named DP-Fusion.

The paper proceeds as follows. In Sect. 3, we describe details of our methodol-
ogy. Section 4 gives out the experiment results of online localization in dynamic
environments on Norland datasets. In Sect. 5, we have a discussion about the
results and future work.

3 Approach and Methodology

In this paper, we contribute a new proposal that exploits the advantages of
powerful feature representations via CNNs in order to perform a robust vision-
based localization across the seasons of the year, as introduced in the graphical
explanation of our approach given in Fig. 2. Our work proceeds as follows.

(1) Extract features from Conv3 of AlexNet. Consider dimensions reduction via
IPCA.

(2) Vectors of online images will match with datasets vectors one by one
through cosine distance. Normalize matching matrix through kernel method
to reduce ambiguities caused by confusing datasets. Save matching matrix
as a gray image.

(3) Image processing to the gray matching image including image binarization.
(4) Set parameters and find best matching sequence online through RANSAC

(random sample consensus).

3.1 Algorithm Framework

The algorithm framework of our method is described in Algorithm 1. About
the map framework, we used pure image retrieval but the datasets were stored
in order according to the images’ incoming time. If so, we can not only ensure
accuracy but also compute efficiently. We chose features from Conv3 of AlexNet
as our holistic image descriptor. The dimensions of Conv3 are 64896, which
means that one image is shown as a 64896 dimensions vector f . We build visual
map {[f , l]}ni=1 with location of each image. So the current image sequences are
expressed as {I}tj=t−m+1. High-dimensional vectors result in time-consuming.
We consider dimensions reduction via IPCA. Although image descriptors are
somewhat losing information, it reduces the ambiguous matching causing from
the confusing datasets like sky, ground and trees. Vectors of online images will
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Algorithm 1. Algorithm: visual localization
Input: Visual Map {[f , l]}ni=1, where f is the feature vector of image on location

extracted from AlexNet; l is location of corresponding image; n is the
size of visual map; Current image sequences {I}tj=t−m+1, where m is the

sequence size; last robot location l̂t−1

Initialize: l̂t = l̂t−1 Output: Robot current location lt
for t = 2 to n do

Calculate {f̂}tj=t−m+1 the feature of {I}tj=t−m+1

Calculate matching matrix M and Mij = F(fi, f̂j)
Kernel process to every element of the matching matrix m̂ij = e1−cosmij

Normalize the matching matrix Mij =
255(Mij−Mmin)
Mmax−Mmin

take M as a gray
image Ig
Change Ig to binary image Ib using suitable thresholding.
Deal Ib with morphology method and get image Im
Using RANSAC method to find the best matching line y = kx + b on Im
The current image’s best matching feature in the visual map is fkm+b

Set l̂t = lkm+b

end

return l̂t

be compared with datasets vectors one by one through cosine distance. We then
get matching matrix S whose elements float in range (0, 1]. Normalize match-
ing matrix through kernel method to reduce ambiguities caused by confusing
datasets that match against most of the online images. Then it is converted to
a binary gray image by a suitable thresholding. We tried to adjust parameters
and then find the best matching sequence online through RANSAC. The current
image’s best matching feature in matching matrix is fkm+b. Then the current
image’s best matching image in the visual map is lkm+b.

3.2 Feature Extraction from Deep Learning

We extracted features from Conv3 of AlexNet as our image holistic descrip-
tor provided by Caffe. The dimensions of Conv3 are 64896, which means that
one image is expressed by a 64896 dimensions vector. The vector dimensions of
different layer in AlexNet ConvNets are listed in Table 1 [10]. [28] gave us the
conclusion that the layers higher in the hierarchy are more semantically mean-
ingful but therefore lose their ability to discriminate between individual places
within the same semantic type of scene. It’s important to decide which layer we
use. Features from Conv3 layer performs reasonably well in terms of extream
appearance changes.

3.3 Dimensions Reduction

We tested on Norland datasets to determine how many dimensions fit best for
time consuming and accuracy. We chose 300 images sequence in the spring season
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Table 1. Dimensions of different layer of AlexNet

Layer Dimensions Layer Dimensions

Conv1 96× 55× 55 Conv4 384× 13× 13

pool1 96× 27× 27 Conv5 256× 13× 13

Conv2 256× 27× 27 fc6 4096× 1× 1

pool2 256× 13× 13 fc7 4096× 1× 1

Conv3 384× 13× 13 fc8 1000× 1× 1

Table 2. Relationship between percent of main information and n components

n components Information ratio n components Information ratio

316 99% 51 93%

187 98% 44 92%

136 97% 38 91%

99 96% 33 90%

76 95% 29 89%

62 94% 25 88%

as recorded and 500 images sequence in fall as a test. We used Incremental
PCA in scikit-learn for a large number of images matching. IPCA is one of
the essential high-dimensional data analysis. IPCA transforms high-dimensional
data to low dimensions through the linear transformation. The dimensions of
the different layers of AlexNet are shown in Table 1. It is easy to understand
that more dimensions we keep more information we will attain, but also time-
consuming. So the primary task is to determine how many dimensions we keep
for each vector.

The relationships between the parameter n components and main informa-
tion Ratio are listed in Table 2. In general, we had better keep at least 90% main
information ratio in case of influence on accuracy. We also compared matching
result among different dimensions. The comparison results are shown in Fig. 3.
The best matching line cannot be detected with less than 20 dimensions. 33
dimensions is clear enough and also save computation consuming. In short, we
chose 33 dimensions vectors as image descriptors.

3.4 Kernel Transform and Normalization of Matching Matrix

Our task is to find the best matching line precisely. We have to use math trans-
form to make this line clearer. We choose kernel method including inverse the
elements of matching matrix and exponentiation. The reasons for choosing this
method are listed as follows.

(1) Cosine distance between 2 images cannot stand for the positive proportion
between the similarity and the matching matrix elements.
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(a) Matching image of 5 di-
mensions features

(b) Matching image of 10
dimensions features

(c) Matching image of 20
dimensions features

(d) Matching image of 33
dimensions features

(e) Matching image of 51
dimensions features

(f) Matching image of 99
dimensions features

Fig. 3. Comparision matching image among different dimensions including 5, 10, 20,
33, 51, 99 dimensions. The best matching line turns clear with dimensions increasing.
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Fig. 4. Function curves of cosine and kernel method distance.

(2) Kernel method will widen the distance between false negative and true pos-
itive places.

Figure 4 is function curves comparison computed from cosine distance, shown
in Eq. (1), and kernel method distance, shown in Eq. (2). The blue line stands for
the cosine distance of two image vectors. The brown line stands for the kernel
method distance. We can see that kernel method can augment the difference
between totally different and similar places. The color of the best matching
line appeared as black and the different places appeared as white, shown in
Fig. 5. What’s more, normalize matching matrix through kernel method reduced
ambiguities that caused by confusing datasets that match against most of the



Dynamic Environments Localization via Dimensions Reduction 247

online images. Save matching matrix as a gray image for the following processing
including morphology transformation and binarization.

What’s more, we normalized the matching matrix with the range of 0 to 255
with Eq. (3). It turned evident after kernel method. It’s of great help for the
morphology processing and visualization.

(a) Matching ma-
trix of cosine dis-
tance

(b) matching ma-
trix after kernel
method

Fig. 5. We chose a sequence of 3000 images in spring Norland datasets as trained
features and 3000 images in winter Norland datasets as online images. (a) Cosine
distance matching matrix. (b) Kernel method distance matching matrix.

We tested kernel method on spring and winter seasons in Norland datasets.
There are 3000 spring images and 3000 winter images captured in the same place.
Besides, the beginning of two images sequence is the same image. Thus, one line
appears on the diagonal for it’s the best matching sequence. The matching result
is shown in Fig. 5. We matched online images with recorded datasets images one
by one through cosine distance with cos <fi, fj>. However, the matching image
shown in Fig. 5(a) appeared confusion between terrible matching and perfect
matching. However, the diagonal line becomes evident through kernel method
of Eq. (2) and normalization method of Eq. (3). The matching image is shown in
Fig. 5(b). At last but not the least, save the matching matrix as a gray image,
which will be converted to binary one by suitable threshold.

cos <fi, fj>=

33∑

i=1

aibi

33∑

j=1

a2j

33∑

k=1

b2k

(1)

fi = {a1 a2 . . . a33}, i ∈ D, D is set of datasets images, fj = {b1 b2 . . . b33},
j ∈ O, O is set of online images

m̂ij = e1−cosmij (2)

Mij =
255 (Mij − Mmin)
Mmax − Mmin

(3)



248 H. Zhang et al.

4 Experiments

Our experiments are designed to show the capabilities of our method with
reduced features and image processing. Our approach is able to (i) localization
in scenes across seasons ignoring dynamic objects, varying weather and season
shifts. (ii) save time and computation consuming. We perform the evaluations on
public available Norland datasets used in SeqSLAM [20]. The gray images were
captured in 1 frame every second and the size have been cropped into 64×32. If
our approach still works in such unclear and tiny images, then it can save a lot
of time and computation consuming. Examples of matching images are shown
in Fig. 3.

(a) Matching matrix after
kernel method and normal-
ization

(b) Binarization image (c) Best matching line in
matching image

Fig. 6. We chose a sequence of 300 images in fall season trained as map and locate
online in spring season. (a) Matching image after kernel method and normalization. (b)
Binarization image of (a) with suitable thresholding. (c) Detecting line with RANSAC
algorithm and the green line is just the best matching line. (Color figure online)

We can see that in Fig. 5(b) the best matching line became obvious. Our task
is to find its mathematical model to find the corresponding index in datasets.
We decided to use classical RANSAC algorithm.

4.1 Online Search in Dynamic Environments

In Fig. 6, we chose a sequence of 300 images in fall season trained as the map and
locate online in the spring season. We can see that the features extracted from
Conv3 of AlexNet didn’t affect the matching result. On the opposite, reduce
the influence of background information, shown in Fig. 6(a). Figure 6(b) is the
binarization result of the matching image. You see that most of the interfere
information has been wiped off. The capacity of restraining distractor has more
important effect during robots localization. We can see that in Fig. 6(c) the green
line is just the best matching in this period. The current image’s best matching
feature in matching matrix is fkm+b. Then the current image’s best matching
image in the visual map is lkm+b.

In Fig. 8, we plot 3 lines to assess the error of our approach. The blue line
stands for the index of ground truth. Red line means the index of matched
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images with our approach. The yellow one is index error between ground truth
and matching images. The search index in the range [1872, 2026] in x coordinate
axes cannot be updated. We will discuss this problem in Sect. 5 (Fig. 7).

(a) Spring images 8101-8400 with
fall 8001-8500

(b) Spring images 6601-6900 with
fall 6501-7000

(c) Spring images 9301-9600 with
fall 9201-9700

(d) Spring images 9601-9900 with
fall 9501-10000

Fig. 7. Examples of some matching images. The number, take ‘8101–8400’ for example,
means index of images sequence.

4.2 Results

Our paper present a novel and time-consuming algorithm to locate a robot
in dynamic environments across seasons. It’s a rapid localization system. We
extracted features from Conv3 of AlexNet and it did outperform hand-crafted
features in robots localization domain. Dimensions reduction via IPCA is a novel
try. Each layer of AlexNet develops advantages in the different domain. It’s
proved that Conv3 is the best choice for robots localization. Luckily it helped
a lot to quicken computing speed and reduce confusing matching from datasets
caused by images match against most of the online images. We compared vec-
tors of online images with datasets vectors one by one through kernel method
distance. This process widens the difference between similar and totally different
places. What’s more, image processing to the gray matching image, including
converting to binary one by suitable thresholding, turned complex data associ-
ation graph into simple image processing. As for sequence matching, we used
classical RANSAC algorithm to find the best matching line. Our experiments
results show that dimensions reduction is a great idea to quicken computing
speed and reduce confusing matching. And our algorithm is robust to season
shifts, dynamic environments, changing weathers and so on. Examples of some
matched images are shown in Fig. 10.
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Fig. 8. Experiments result tested on 3000 images. The function of ground truth index
line is y = x, shown in blue line. The brown line is matched images index with sequence
of 300 images each time. The yellow line is error between real position and matched.
(Color figure online)

(a) Images-02204
in spring datasets

(b) Images-02205
in spring datasets

(c) Images-02206
in spring datasets

(d) Images-02207
in spring datasets

Fig. 9. Captured images when the train went through a tunnel in Norland datasets.

(a) Spring scene 1 (b) Spring scene 2 (c) Spring scene 3

(d) Fall scene 1 (e) Fall scene 2 (f) Fall scene 3

Fig. 10. Examples of some matched images.
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Fig. 11. Matching image that covers totally dark images in spring image 1872 to 2026.

5 Discussion and Future Works

The limitation of our system is from the image capture equipment. The images
are hard to express in totally dark surroundings. The matching matrix that
covers dark images sequence is shown in Fig. 11. Actually in Fig. 8 there is no
matching line for images 1872 to 2026, so we cannot detect the matching line at
all. Examples of dark images are shown in Fig. 9. The matching image is shown
as a black block. We will consider about adding assist of the laser. Besides, the
concrete relationship between features dimensions and the localization accuracy
will be studied. We want to find out the most suitable dimensions of CNNs fea-
tures to ensure precision and operation speed. It needs iterative testing. Besides,
we will train a generic holistic image descriptor ignoring the influence of season
shift, weather changes, dynamic environments and so on. However, it needs a
large number of images captured over years to train CNN.
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