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Abstract—Point-cloud is a widely used representation for
objects and scenes. It generally consists of a large amount of
3D coordinates of points describing reflective surfaces. A subtle
problem is that the number of points is usually so large that
real-time transmission and efficient storage is not feasible. In
this work, we propose to use 3D Discrete Cosine Transform (3D-
DCT) to compress these two typical categories of data, namely
point-cloud data extracted from objects and environments (i.e. 3D
maps). Experimental results show that the proposed method leads
to high compression ratio and flexible reconstruction behaviors
comparing with other related methods.

I. INTRODUCTION

A. Motivation

A wide spectrum of perception applications in robotics are

associated with point-cloud-based modeling [1], [2], [3]. Point-

cloud is an important format of representation for high level

reasoning, such as sensor fusion-based recognition [4], [5].

After the raw points are acquired, the dense information needs

to be processed and analyzed. A substantial amount of memory

storage is to be occupied because of the high density of

points, which makes the real-time retrieval [6], [7] and efficient

storage easily intractable without compression.

Several works have studied this problem, among those the

Octree encoding [8] is the most prevalently applied in point-

cloud compression by recursively dividing the 3D data into

eight octants. The similar concept is also adopted in the

widely used Point Cloud Library (PCL) [1]. These methods

are regardless of the data structure and can be easily gen-

eralized. We denote these methods as structure-independent

algorithms. However, they usually ignore the fact that the

inherent structure of different raw data would provide hints

for better compression. For example, the point-cloud that

describes a flat plane has much potential to be compressed with

high compression ratio than that describes a complex object,

even though they may contain similar number of points or

similar coverage in volume. Therefore, structure-independent

algorithms may waste lots of space to store the structured data

and usually sensitive to the orientation.

Another type of approaches is relying on the results of struc-

ture analysis of the point-cloud, namely structure-dependent

algorithms. They are usually based on structure analysis. For

example, plane extraction [9], [10] and tensor analysis [11],

[12], [13] are usually adopted to first analyze the structure

of a scene, then descriptions are constructed accordingly. In

structured environments or for highly-structured objects, these

methods are very efficient, since parametric representations of

planes or surfels can greatly reduce the number of points to be

stored. However, they generally could not work in unstructured

environments where the planes are not detectable or are costly

to be efficiently represented. It means these methods are

efficient for structured data but not for unstructured data.

Recently, there are some other works are proposed [14], [15],

[16]. Authors in [14] used depth image of point-cloud for

compression, which is not suitable for applications without

perceptive views. Authors in [15] can achieve real-time point-

cloud compression, but they used 2D point-cloud data which

is different from this paper. Authors in [16] used conventional

image processing method DCT similar to this paper, but they

only use normal image data which is different from data

derived from robotic applications.

By analysing the pros and cons of these two typical types

of compression techniques, we find the key is to determine

the dynamics of the point-clouds along the surface. For

unstructured point-clouds, the dynamics is usually fast (high

frequency); conversely, the dynamics is slow for structured

point-clouds (low frequency). Deriving from this, we consider

that an efficient generic compression method must be able

to capture the dynamic characteristics of data. A typical

variational method with analysis at different scales is by using

wavelet to compress the point-cloud in a tree structure [17].

However, this method is prone to low efficient when the

point-cloud is sparse, due to the similar reason as structure-

dependent methods.

In this paper, inspired by these observations, we propose

to use three-dimensional DCT (Discrete Cosine Transform)

to unveil the undiscovered information in the raw data. DCT

captures signal properties in frequency domain where the low

frequency components provides low dynamic information and

high frequency components gives more detailed information.

In this case, the coarse shapes of the point-cloud are retained

by reconstruction using inversed DCT (IDCT) with coefficients

at low frequency. After that, details can be refined by using

more coefficients at a higher frequency. An existing solution

of compressing 3D data using Discrete Cosine Transform was
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confined to two dimensions and had the Cartesian coordinates

transformed to spherical coordinates [18]. In the spherical

coordinates, sampling was performed on two angles and the

index associated with angles specified the location of the

corresponding depth value. The 2D DCT took the depth value

to operate the transform. However, this method only works

for depth images, where all the points can be projected to a

spherical surface without losing information. This is usually

not the case for a complete representation of an object or 3D

maps constructed by point-clouds.

Our solution aims to reduce the attenuation of the depth

value by introducing one more dimension comparing to [18],

by which more precise structures in complicated environments

can be preserved. This is implemented by assigning a constant

value (potentially can also use the intensity of laser reflection

[19]), to the present points in Cartesian coordinates. Sampling

and further preprocessing steps are taken in advance to convert

the Cartesian coordinates into positive integers before 3D DCT

takes place. 3D DCT results in a large amount of coefficients

left in the 3D matrix and by quantizing the them properly, a

significant amount of data will be compressed and only very

few amount of data will be left to transmit.

B. Contributions

In this paper, we implement a robust generic method of data

compression subjecting to the information significance of the

data, based on 3D-DCT. This approach will be first examined

in point-cloud data collected from the scans of individual

objects 1 and then it will be extended into the compression of

environment scans. The environment data are provided by our

previous work [19], where we recorded the data from several

scenarios including structured and unstructured instances, e.g.

an apartment, a hallway, a mountain plain, stairs, a gazebo in

the park and woods. These data sets are representatives of a

great variety of environments and they are good sources to be

put on trial for the experiments.

C. Organization

This paper consists of four sections. Section I describes the

background and our aim in research, continued by Section

II explaining the algorithm in data compression. Sections IV

presents the result in the experiment and discusses the reasons

behind. At the end, Section IV will draw conclusions.

II. PROPOSED ALGORITHM FOR POINT-CLOUD

COMPRESSION

We assume the raw point-cloud data were provided as

an M × 3 matrix, including a large amount of real 3D

row vectors, each of which represents a single point of the

cloud. In order to reduce the computational complexity and

help the designation of proper parameters for 3D-DCT, we

first perform several preprocessing steps to convert the raw

data into appropriate positive integers. After the refined data

were obtained, a 3D matrix was generated to house all the

grid points whose Cartesian coordinates were specified in

1http://www.csse.uwa.edu.au/∼ajmal/recognition.html

the refined 2D matrix. The 3D matrix was then processed

by 3D DCT and it holds all the DCT coefficients acquired.

Then a quantization procedure using a constant quantization

table is required to reduce the valid DCT coefficients. This

process is inspired by the standard JPEG compression process

[20]. It reduces a significant amount of storage required, as

many coefficients regarding the components of high frequency

would be quantized to 0. In this experiment, we further boost

up the compression ratio by iteratively reducing the amount

of quantized coefficients to transfer. Dequantization and 3D

IDCT were then followed. Finally, the compressed data was

reconstructed and errors were measured. An illustration of the

mentioned algorithm is described in the flow chart below.

A. Sampling and Preprocessing of Data Points

Given the original data set, sampling was first done to

reduce the amount of points by factor of 10. The mean value

of the coordinates were taken within the sampling frame.

The sampled coordinates were rounded to closest integers and

shifted by the range of the data set to prepare for the positive

integer-based 3D DCT operation. The unique data points were

selected to be contained in a three dimensional matrix, where

the range of the Cartesian X, Y, Z coordinates represented each

dimension of the matrix respectively. The intensity value 255

was assigned to indicate the presence of a data point whereas

0 denoted the absence.

B. 3D-DCT Operation and Quantization

The three dimensional matrix constructed above was passed

to perform 3D-DCT. The 3D DCT formula is given by,

F (u, v, w) =

n−1
∑

i=0

n−1
∑

j=0

n−1
∑

k=0

f(i, j, k)a (u) a (v) a (w)

cos
(2i+ 1)uπ

2n
cos

(2j + 1) vπ

2n
cos

(2k + 1)wπ

2n

(1)

where

a(u) =















√

1

n
for u = 0

√

2

n
for u = 1, 2, ..n− 1

(2)

Quantization of coefficients was done at a uniform level

of 255. Several iterations to select reduced amount of the

quantized coefficients will be run to inspect how error rate

varies with compression ratio. Compression ratio is calculated

by:

Compression Ratio (CR) =
#points after preprocessing

#coefficients for storage or transfer
(3)

C. Dequantization and 3D-IDCT

To reconstruct the original data, dequantization was first per-

formed and the 3D-IDCT operation next. A table marking the

location of data points was stored before 3D-DCT operation.

It could be used to select the recovered data points after IDCT

operation.
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Fig. 1. The work flow of the proposed algorithm using 3D-DCT

f ′(i, j, k) =
n−1
∑

u=0

n−1
∑

v=0

n−1
∑

w=0

F (u, v, w) cos
(2i+ 1)uπ

2n
cos

(2j + 1)vπ

2n
cos

(2k + 1)wπ

2n
(4)

Method Octree [8], [1] Proposed

Compression Octree construction 3D-DCT
Decompression Using nodes of the tree 3D-IDCT

Complexity O (Nlog(N)) O
(

N2
)

Compression Ratio Low High
Sensitive to data orientation Yes No

TABLE I
COMPARISON BETWEEN OCTREE-BASED AND THE PROPOSED METHODS

All the selected coefficients in the 3D matrix was used

to perform IDCT operation. The IDCT formula is given by

equation (4) on the next page.

D. Reconstruction of Data and Evaluation of Errors

Hamming distance was introduced to evaluate the recon-

structed errors. If a sample cannot be reconstructed success-

fully, the hamming distance will increment by 1. It calculated

the total variation from the data points obtained before 3D

DCT operation to after IDCT operation. Error rate is calculated

by:

Error Rate (ER) =
Summed Hamming distance

#Points after reconstruction
(5)

E. Summary

Given the proposed approach, we can have an intuitive

comparison to the octree-based methods [8], [1] as shown in

table I.

III. EXPERIMENT RESULTS

While preserving all of the 3D DCT coefficients, we ob-

served a low error rate in reconstruction with the compression

ratio resulted. The reconstruction of the objects can be easily

identified by human eye perception and thus validated the

3D DCT-based encoding in data point-cloud compression of

Object Chicken Trex Kangaroo Chef

Compression Ratio 23.42 37.86 51.97 48.10
Error Rate (%) 2.26 2.45 4.32 2.08

TABLE II
COMPARISON OF COMPRESSION RATIO AND ERROR RATE OF

POINT-CLOUD COMPRESSION ON OBJECT

individual objects. The table below provides the statistics of

object compression ratio and error rate.

When the amount of 3D DCT coefficients to store was

further reduced, by which was implemented by iteratively

selecting fewer coefficients, we observed that a relatively

stable error rate was maintained while the compression ratio

improved. As DCT decorrelates signal best when the signal

information concentrates at the low frequency, an object

outlined by a smooth contour and covered by a continuous

surface fulfills this property. The error rate associated with

the reconstructed object demonstrated the application of 3D

DCT in object point-cloud compression achieve a very high

compression ratio by compromising little errors. Comparisons

between the objects constructed from raw data and compressed

data are displayed as follows. A table presenting varying

compression ratio vs error rate of four different objects is also

provided.

With these results, the experiment then progressed to ex-

plore the possibilities of the applying 3D DCT in environment

settings to achieve compression. Multiple objects existed in

an environment and some of them were dynamically moving

while some were not. As each environment was structured in a

different way, not all environments contain a “compact energy”

property and thus 3D DCT operation may not be effective

to all environments. Static environments such as apartment,

stairs and mountain plain tend to have low error rates whereas
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representations of data before taking them to 3D DCT and

improve the design of quantizers to further enhance the results

in the experiment.
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