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Abstract—This paper introduces a reinforcement learning
method for exploring a corridor environment with the depth
information from an RGB-D sensor only. The robot controller
achieves obstacle avoidance ability by pre-training of feature
maps using the depth information. The system is based on the
recent Deep Q-Network (DQN) framework where a convolution
neural network structure was adopted in the Q-value estimation
of the Q-learning method. We separate the DQN into a super-
vised deep learning structure and a Q-learning network. The
experiments of a Turtlebot in the Gazebo simulation environment
show the robustness to different kinds of corridor environments.
All of the experiments use the same pre-training deep learning
structure. Note that the robot is traveling in environments which
are different from the pre-training environment. It is the first time
that raw sensor information is used to build such an exploring
strategy for robotics by reinforcement learning.

I. INTRODUCTION

Mobile robot exploration of an unknown environment is
a quite common problem for robot applications, like rescue,
mining etc. Normally, with information from vision or depth
sensors, robot requires complicated logic about the obstacles
and topological mapping of environments [1] [2] designed by
human-beings. However, there is no high-level human-brain-
like intelligence in these traditional approaches. Recently,
machine learning has attracted more and more attentions. In
this paper, we want to develop a machine learning method for
robots to explore an unknown environment using raw sensor
inputs.

Regarding the requirements mentioned above, Deep Re-
inforcement Learning, merging reinforcement learning and
deep learning, is a proper method to apply in this scenario.
For example, Google DeepMind implemented a Deep Q-
Network (DQN) [3] on 49 Atari-2600 games. This method
outperformed almost all of other state-of-the-art reinforcement
learning methods and 75% human players, without any prior
knowledge about the Atari 2600 games. It showed great po-
tential to apply this algorithm in other related fields including
robotic exploration.

Not like the DQN mentioned above, we apply this learning
approach in two steps in the robotics exploration for an
unknown environment. Firstly, we build a supervised learning
model taking the depth information as input and the com-
mand as output. The datum is manually labeled with control
commands to tune the moving directions of the robot. This

supervised learning model is implemented with a Convolution
Neural Network [4]. Secondly, a neural network structure with
three fully-connected hidden layers was used to mimic the
reinforcement learning procedure taking the feature maps as
input. The feature maps are the output of the last second
layer of the supervised learning model trained before. This
reinforcement learning framework is defined as a Q-Network.
In this paper, we will mainly introduce the second step.
Particularly, we stress the following contributions:

• We design a revised version of DQN network for a
moving robot to explore an unknown environment. The
project is implemented in Gazebo and ROS-based inter-
faces. Feature learning is based on Caffe [5], a popular
tool-kit for deep learning.

• The model is validating in several simulated environ-
ments. We also discuss the future work, such as adding
noise to verify the robustness of the system and apply it
in real environments.

II. RELATED WORK

A. Reinforcement Learning in Robotics

Reinforcement Learning (RL) [6] is an efficient way for
robotics to acquire data and to learn skills. With an appropriate
and abstract reward, the robot can learn a complex strategy
without ground truth as references. It was just applied on
mastering the strategy of GO (an ancient Chinese board
game which was regarded as the most challenging task for
artificial intelligence) [7]. It indicates the great feasibility of
reinforcement learning in other fields. RL was also applied on
an autonomous helicopter flight [8] and autonomous inverted
helicopter flight [9], by collecting the flight data and learning
a non-linear model of the aerodynamics.

Reinforcement learning was also proved to improve the mo-
tion behaviour of a humanoid robot to react for visually iden-
tified objects substantially [10], by building an autonomous
strategy with little prior knowledge. In this application, The
robot showed a continuously evolved performance with time.

Most of reinforcement learning methods for robotics are
based on state information. To our knowledge, raw image
sensor information has never been considered directly.
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Fig. 1. Structure of the CNN layers. Depth images after down sampling will be fed into to the model. Three Convolution layers with pooling and rectifier
layers after are connected together. After that, feature maps of every input will be fully connected and fed to the softmax layer of the classier.

B. CNN in Perception

Convolution Neural Network (CNN) is a classic visual
learning method. With the development of large-scale com-
puting and GPU accelerating, huge CNN frameworks can be
set with tens of convolution layers.

Normally, CNN was used to solve a classification problem
with a softmax layer, such as imagenet classification [11] [12]
and face recognition [4]. With a regression layer to optimal the
euclidean loss, the feature maps extracted by CNN can also be
applied to key points searching problem [13] [14]. Computer
vision based recognition methods are mainly feature detection
and extraction [15] [16] [17], while CNN extract this feature
model by self-learning.

In terms of robotics, CNN was also used to perceive
environment information for visual navigation [18]. However,
a supervised-learning-based method requires a complicated
and time-consuming training period and the trained model
cannot be applied in a different environment directly.

Fig. 2. Feature map extracted from the supervised learning model is the input
and is reshaped to a one dimension vector. After three fully-connected hidden
layers of a neural network, it will be transformed to the three commands for
moving direction as the outputs

III. IMPLEMENTATION DETAILS

Travelling in an unknown environment with obstacle avoid-
ance ability is the main target of this paper. This task is

Algorithm 1 Q-network algorithm
1: Initialize action-value Q-network with random weights θ

Initialize the memory D to store experience replay
Set the distance threshold ls = 0.6m

2: for episode = 1,M do
3: Set the Turtlebot to the start position.

Get the minimum intensity of depth image as lmin
4: while lmin > ls do
5: Capture the real time feature map xt
6: With probability ε select a random action at

Otherwise select at = argmaxaQ(xt, a; θ)
7: Move along the selected direction at

Update lmin with new depth information
8: if lmin < ls then
9: rt = −50

xt+1 = Null
10: else
11: rt = 1

Capture the new feature map xt+1

12: end if
13: Store the transition (xt, at, rt, xt+1) in D

Select a batch of transitions (xk, ak, rk, xk+1) ran-
domly from D

14: if rk = −50 then
15: yk = rk
16: else
17: yk = rk + γmaxa′ Q(xk+1, a

′; θ)
18: end if

Update θ through a gradient descent procedure on the
batch of (yk −Q(φk, ak; θ))

2

19: end while
20: end for

defined as controlling a ground-moving robot in an environ-
ment without any collisions with the obstacles. The input
information here is the feature maps extracted by the CNN
supervised learning model which was trained in our prior



work. Supervised learning model can be used to perceive an
environment [18], so the feature maps can be regarded as
abstracted information for the environment to some extends.
Robot will perform obstacle avoidance by Q-network learning
of itself in other environments which are a little different
from the training environment. The implementation of the
experiment includes three parts:
• a simulated 3D environment in Gazebo for a robot to

explore.
• a Q-network reinforcement learning framework.
• a simulated Turtlebot with a Kinect sensor in Gazebo

controlled by the Q-network outputs.

(a) Straight Corridor

(b) circular Corridor

Fig. 3. Simulation Environment

TABLE I
SETTING OF REWARD

State Reward Value
collision or stop -50
keep-moving 1

A. DQN

DQN defined the tasks between the agents and the envi-
ronments [19] in Atari 2600 games. The environment was
set as ε. At each step, the agent selected an action at from
the action sets of the game and observed a displayed image
xt from the current screen. The change of the game score
rt was regarded as the reward for the action. For a standard
reinforcement learning method, we can complete all of these
game sequences st as Markov decision process directly, where
st = x1, a1, x2, ..., at−1, xt. Defining the discounted reward
for the future by a factor γ, the sum of the future reward
until the end would be Rt =

∑T
t′=t γ

t′−trt′ . T means the
termination time-step of the game. The target was to maximize
the action-value function Q∗(s, a) = maxπ E[Rt|st = s, at =
a, π], where π is the strategy for choosing of best action. From
the Bellman equation, it is equal to maximize the expected

TABLE II
TRAINING PARAMETERS AND THEIR VALUE

Parameter Value
batch size 32
replay memory size 5000
discount factor 0.85
learning rate 0.000001
gradient momentum 0.9
max iteration 15000
step size 10000
gamma 0.1

value of r+γQ∗(s′, a′), if the optimal value Q∗(s′, a′) of the
sequence at the next time step is known.

Q∗(s′, a′) = Es′∼ε[r + γmax
a′

Q∗(s′, a′)|s, a]

Not using iterative updating method to optimal the equation,
it is common to estimate the equation by using a function
approximator. Q-network in DQN was such a neural net-
work function approximator with weights θ and Q(s, a, θ) ≈
Q∗(s, a). The loss function to train the Q-network is:

Li(θi) = Es,a∼ρ(·)[(yi −Q(s, a; θi))
2]

yi is the target, which is calculated by the previous iteration
result θi−1. ρ(s, a) is the probability distribution of sequences
s and a. The gradient of the loss function is shown below:

∇θiLi(θi) = Es,a∼ρ(·);s′∼ε[(yi −Q(s, a; θi))∇θiQ(s, a; θi)]

B. Q-network-based Learning System

To accomplish the task of exploration, we simplify the DQN
[3] into two steps. At first, a 3-layer Convolution Neural Net-
work framework is built to do the pre-processing procedure.
Fig. 1 shows the CNN structure in detail. By three times
convolution, pooling, and rectifier activation, the feature maps
of the inputs are extracted. A softmax layer is implemented
to get the output distribution of the moving commands. When
training the network, we control the robot to explore in an
environment and label the depth image from Kinect sensor.
The related control command from a human being was labelled
as the ground-truth. The parameters, training and analysis of
this CNN model will not be introduced here.

In the second step, the reinforcement learning part, we use
the trained model mentioned above to forward every input
image of real time and get the feature map of the depth image.
Feature map is the output of the last ReLU layer in Fig. 1.
Note that we are not using the output command from the first
step directly. The feature map consists of 64×20×15 matrices.
Fig. 2 shows the structure of the neural network to estimate
the Q-value of Q-network. In the exploration period, the pre-
processed depth images from Kinect will be memorized with
the related action, reward and the pre-processed depth image
captured after executing the action as a transition. At the same
time, we randomly choose a batch of transitions to update the
weights of Q-network by gradient descent.

The reward function for the Q-network system has two
different feedback values, one for normal moving and one for



(a) Straight Corridor Training Loss (b) circular Corridor Training Loss

Fig. 4. The converging curves of batch loss in iteration procedure

the collision with the obstacles. The system will stare at the
Turtlebot state by checking the minimum depth between the
Turtlebot and the obstacles from the Kinect. Table I shows the
declaration of the reward setting. Here we set the threshold
to be 0.6 meter, keeping enough space between the robot
and the obstacle. When the depth is lower than the threshold
or the robot position does not change for a period of time,
we set the robot state to a termination and robot is reset to
the start position. The reward for a termination is −50. At
that time, we think there is a collision between the robot
and the obstacle. Otherwise, if the robot keeps moving, the
reward is 1. In the exploration procedure, the only target is to
achieve obstacle avoidance, so the feedback of collision must
be much larger than the normal moving. When to update the
weights, if the reward is −50, that means the robot collide
with an obstacle, and the target value for the state and action
in this transition will also be −50. On the other hand, the
target will be calculated by Bellman Equation if the robot
state in this transition is keep-moving. Algorithm 1 presents
the whole framework of the Q-network training procedure. In
every episode of exploration, randomly choosing the command
will increase the variety of the training batch. The randomness
will less and less with the decreasing of ε. Every time,
after the execution of the chosen moving command, the new
feature map will be captured with rewarding 1, or the robot
collide with the obstacle with rewarding −50. After storing
the transition, the weights of Q-network will be update by the
batch of transitions which are chosen randomly as well.

C. Environment Design in Gazebo

Gazebo is used to build a simulation environment in this
project. The robot is a Turtlebot with two differential wheels
and a Kinect sensor. The whole project is implemented on
Robot Operation System(ROS). Q-network system tracks the
depth information from Turtlebot in Gazebo simulated envi-
ronment. The command related to the highest Q-value will be

transformed to the angel velocity for the Turtlebot by ROS
topic.

IV. EXPERIMENTS AND RESULT

To evaluate the Q-network learning system, two different
kinds of environments are designed as shown in Fig. 3. The
first one consists of a direct straight corridor. The other one
consists of a circular connected corridor with more com-
plicated depth information. The table II shows the training
parameters and their values in gradient descent procedure of
the Q-network learning implemented by Caffe. The step size
means that the learning rate will multiply gamma after first
10000 iterations, which means the learning rate of last 5000
iterations is 0.0000001.

A. Training Result
The Q-network-based learning system experienced 15000

iterations in both of the two simulated environments.
Fig. 4 shows the loss converging curves in the whole learn-

ing period. In every iteration step, the euclidean loss between
target Q-value and the predicted Q-value is calculated. The loss
in Fig. 4 is the average value of the whole training batch in
related iteration step. Because we choose the batch randomly
in every step, the different training batch sets between the
successive gradient descent steps lead the apparent fluctuation
in Fig. 4 in both of the environments. It also shows that the
loss of both of the environments decreased rapidly in first 1500
iteration steps. And after that, the loss in the straight corridor is
stable. But the convergence of the loss in the circular corridor
environment is still decreasing apparently. That should be
caused by the complexity of the depth information which need
more time to train the model.

B. Test Result
In the training process, the weights of the Q-network were

saved regularly in every 300 steps of iteration. For both en-
vironments, we randomly choose several pre-processed depth



(a) Q-value test for Straight Corridor (b) Q-value test for Circular Corridor

Fig. 5. Q-value of the evaluation sets calculated by the model at different iteration stages

information in different states as the test set, which correspond
to different positions of the Turtlebot in the simulated world.
Fig. 5 shows the average Q-value of the test set for 3 different
targets commands by using the trained weights of every 300
steps of iteration.

We can observe that all of the 3 target values converge
towards a stable state with a certain value. The convergences of
Q-value proved the stability of the Q-network system. Along
with the shrinking of the learning rate after 10000 steps of
iteration, the fluctuation of the value is also reduced, especially
for the straight corridor environment. The increment of the Q-
value in the training procedure indicates the Q-network system
is much more reliable with longer training time.

With the reward mentioned above, a direct feedback is the
final scores the robot can achieve, with the trained strategy to
choose the command related to the highest Q-value. The higher
scores also mean that the Turtlebot can keep moving in the
environment for a longer time and avoid more obstacles. But
there is no apparent relation between the scores and moving
distance, because the Turtlebot may move along a tortuous
path. The width of the road in the simulated world is narrow
enough that the robot cannot keep turning along the same
direction rewarding positive infinite scores.

The trained model in every 1000 steps of iteration is tested 5
times in the related environment and the result is shown in Fig.
6. It shows that the test scores of both environments increase
at the first 2000 iterations. Scores tested in straight corridor
world keep consistent near −20, which means the robot moves
30 steps, with terminated reward −50. It is enough to arrive at
the end of the straight corridor. The other one in the circular
corridor environment is increased discontinuously. The highest
test value in circular corridor environment is 80, which means
that the robot moves 130 steps, with terminated reward −50.
The Turtlebot should have finished a lap in that situation.
We can imagine that the robot should keep moving forever

along the circular corridor environment with infinite scores as
a perfect model. But in the test, the robot will finally collide
with obstacles every time. It is possible that the model is still
not robust enough.

Fig. 6. Average score of 5 times evaluation by using the trained model of
every 1000 iteration steps

V. CONCLUSION

The Q-network is reliable to train a moving robot achieving
obstacle avoidance ability in the simulation environment. In
this project, we only use a pre-processed CNN model to extract
the feature map in a certain environment, and another 3-layer
fully connected neural network model is used to train the real-
time learning process in other more complicated environments.
The test results show that the Turtlebot achieved obstacle
avoidance ability and it can travel freely in the simulated
environment with the strategy learnt by itself.



In the future, we will envision the implementation of the
whole DQN framework in real-time exploration directly. That
means there would be totally no pre-processing for the feature
map. In real-time learning, the raw image of depth will be fed
into the model to predict the Q-values. With GPU accelerating,
this should be also feasible.

The reward function should be redesigned as well, because
now every non-collision state is rewarded with the same score.
To make the model more stable, we should add more man-
made and random noise in the input information. However,
there is only random Gaussian filter in the Caffe framework
now. Finally, we will also test this model in real world scenario
in the future.
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