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Abstract— We introduce a software framework for real-
time multi-robot collaborative SLAM. Rather than building a
complete SLAM system, our framework is designed to enable
collaborative mapping for existing (single-robot) SLAM systems
in a convenient fashion.

The framework aggregates local pose graphs obtained from
its multiple robots into a global pose graph, which it then feeds
back to the robots to increase their mapping and localization
effectiveness. The framework can potentially work with various
SLAM algorithms, as long as they provide a pose graph with
an image associated with each node, and absolute scaling. The
merging of pose graphs is purely visual-based and does not
require well-defined initial robot positions nor environment
markers.

To handle network delays, we propose a graph correction
scheme that avoids using mutexes (and thus avoids modifying
the existing SLAM system) by assuming local graph consistency.
Furthermore, we propose a simple image feature filtering
method that uses an associated depth image to filter image
features unsuitable for scene recognition.

We demonstrate the framework’s functionality with several
interior datasets that we have collected using three robots.

I. INTRODUCTION

Simultaneous Localization and Mapping (SLAM) appears
in many robotics-related challenges such as self-driving cars,
crop surveillance, and rescue missions. It attempts to solve
the circular problem of localizing a robot using a map of its
environment while simultaneously generating that map.

One broad category of SLAM algorithms are the ap-
proaches that build and maintain a pose (position and ori-
entation) graph, consisting of robot states (as nodes), and
pose transformations (as edges, i.e., constraints). Each robot
state contains the pose and sensor data (e.g., camera images
or laser scans). The drifting error from odometry can be
reduced by detecting re-visited places and introducing loop
closure constraints, then using global graph optimization.
The goal of graph optimization in this context is to find a
configuration that minimizes the error of the constrained pose
estimations[1]. In Fig. 4, the error minimization is illustrated
in the example of a loop closure. The map can be recon-
structed at any time from the graph by superimposing the
associated sensor data and finding a consistent configuration.
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Fig. 1. The three sub-maps and their connections as generated by our
framework (“office” dataset).

As the graph is a sparse representation of the whole SLAM
state, graph-based approaches are well-suited for large-scale
applications[2] and for collaborative SLAM. Using a multi-
robot system for these applications is promising because
the SLAM problem can be distributed[3]. A team of robot
explorers can split up at a pathway fork and later meet
again, then share and merge their maps. Another advantage
of multi-robot systems is data redundancy in overlapping
areas, which enables robots to “help each other out” in
case of localization loss. In various environments, one can
profit from heterogenous robots for mapping. For example,
a multi-story building could be mapped by a flying drone
in collaboration with a second driving robot. To combine
their respective mapping results, a comprehensive framework
should be able to process data from different SLAM systems
(e.g., monocular and laser scanner SLAM).

Therefore, a multi-robot SLAM framework that aims to
combine individual SLAM results must have at least two
primary functions to tackle the aforementioned problems:
1) It is necessary to have an algorithm that can detect
when robots meet or when a place has been visited multiple
times (also known as place or scene recognition). In case
of a detection, the framework must be able to align the
pose graphs from both robots. 2) It is necessary to have
a communication system that allows the robots to share
information, either directly or over a server.

We propose a framework for teams of robots doing SLAM,
called Team SLAM (or TSLAM for short). The novelty of
the framework is that it can combine existing single-robot
SLAM software into a multi-robot SLAM application. Our
goal was to make TSLAM developer-friendly by making it
easy to setup and to interface.

TSLAM is capable of combining multiple pose graphs
from distributed robots by means of visual scene recognition,
visual relative pose calculation, and graph optimization. The
framework consists of two parts: One part runs on a central
workstation computer and is responsible for the aggregation



of data and for giving feedback. The second part runs on the
mobile robots and is responsible for image pre-processing,
sending pose graph updates, and receiving feedback. The
feedback includes data from all robots. This enables indirect
inter-robot communication (e.g., of mapping results).

To handle delays in data transmission over the network,
usually it is necessary to use mutual exclusion (mutex) locks
on all affected pose graphs whenever a global optimization
is performed to avoid data corruption. For existing SLAM
systems, adding such a locking functionality can require large
changes in the system structure. For this reason, we propose
an algorithm which can detect and automatically correct for
data corruption caused by network delays, which eliminates
the need for mutexes.

In TSLAM, the alignment of pose graphs from different
robots is based on feature matching. Thus, the accuracy of the
graph alignment depends on the quality of the features. We
propose a feature filtering method, which can be employed
when using images accompanied by range information such
as those coming from RGB-D cameras, stereo cameras, or
camera and laser scanner combinations.

The remainder of this paper is structured as follows:
Section II lists related research. Section III particularizes
the posed problems and explains the methods we use to
solve them in more detail. In sections IV and V, we present
experiment results and discussion. Finally, we summarize the
achievements of our research in section VI.

II. RELATED WORK

Multi-robot collaborative SLAM is not a new concept and
has been widely researched before. An overview is given
here to motivate which components we chose to use as part
of our framework and to see if there has been other work
on enabling existing single-robot SLAM systems to perform
collaborative SLAM.

A. Graph-based SLAM

An overview of graph-based SLAM methods is given
by [4]. Examples of recent single-robot graph-based SLAM
systems include ORB-SLAM[5] and iSAM2[6].

Recently, algorithms that operate directly on sensor data
and skip feature extraction and matching (so-called di-
rect methods) have given rise to direct monocular SLAM
approaches[7], [8]. The aforementioned ORB-SLAM has
also been enhanced in that way[9].

B. Graph Optimization

Numerous works have specifically explored graph opti-
mization in the context of graph-based SLAM[10]. “g2o”
offers a highly specialized C++ library implementation[1].
As graph-based SLAM is not robust to false loop closures
(including false scene recognition positives), [11] has devel-
oped an optimization algorithm that can effectively disable
the constraint outliers. In this paper, we also explore the
idea of rejecting constraint outliers to improve the handling
of network delay in distributed graph optimization.

C. Scene Recognition

For scene recognition and performing loop closure in the
SLAM graph, image features are commonly extracted[12],
[13]. FAB-MAP implements a complete SLAM system on
top a bag-of-words (BOW) approach[14]. Research such as
[15] and [16] use image depth data to improve the scene
recognition. In section III-C, we investigate a similar idea.

D. Multi-robot SLAM

Building a multi-robot system from scratch has been re-
searched before, sometimes using components from preced-
ing works[17]. A generalization from single-robot SLAM by
launching multiple robots from a predefined setup includes
[18]. Moving away from predefined setups, relative robot
localization becomes important[19], [20]. This idea can be
combined with scene recognition[21]. Several works pro-
posed distributed computing of the separate SLAM tasks[22],
[23]. Because scalability both with number of robots and
with the map size is significant, various works adopt special
data representations[24], [25]. [26] demonstrates a single-
camera framework for micro aerial vehicles, which requires
handling scale drift. All of these works achieve multi-robot
SLAM by implementing a very specific SLAM framework
and are not able to adopt to new developments. In this
work, we show that our framework can process data from
an existing single-robot SLAM system to form a new multi-
robot SLAM system. This allows our framework to adopt to
novel contributions from other works, and to employ suitable
SLAM algorithms for heterogenous robots.

III. PROBLEM FORMULATION AND METHODS

In this section, we describe the hardware used and the
different modules of the software framework.

A. Development Hardware

For development of the framework, we use a team of
three robots. Each consists of a mobile wheeled base with
rotary encoders, a RGB-D camera, and a netbook with Wi-Fi
connectivity. The robots are remote-controlled by a joystick.
The central workstation consists of a modern laptop.

B. Overview of Data Flow and Processing

The data is gathered and processed on the distributed
robots by their (single-robot) SLAM system. From there, it
is sent to an image pre-processing module, which passes
the result to the central workstation. There, multiple steps
are performed (see Fig. 2). In case a graph optimization is
performed, feedback is sent back to the affected robots.

We use the Robot Operating System (ROS)[27] to handle
asynchronous communication over a Wi-Fi network between
the central workstation, which acts as a server, and the
distributed robot clients. The robots do not need to be
connected to the central workstation at all times. After dis-
connection, they just continue with mapping by themselves.
Upon reconnection, all missing pose graph and map data
is added to the global graph. However, the images recorded
during disconnection will not be sent at a later time for scene
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Fig. 2. Schematics of the overall system setup and framework modules.

recognition to avoid using a lot of bandwidth and impeding
the real-time operation of the framework.

The interfacing that needs to be done to connect a single-
robot SLAM system to TSLAM consists of two steps: 1)
Upon creation of a new node, a pose graph update message
has to be delivered. It consists of the pose graph including
the new node and the current camera image. The image
preprocessing module will then process the message and pass
it on to the central workstation. 2) A callback function has to
be implemented which accepts an incoming graph adjustment
message and updates the local graph accordingly.

C. Image Pre-processing

This module runs on the distributed mobile robots. It
takes a pose graph update message, filters the contained
camera image, then passes the information on to the central
workstation. To save bandwidth, the camera image is not sent
to the central workstation. Instead, only the feature points
are sent for the purpose of scene recognition and relative
pose calculation. To keep this module lightweight, only the
following necessary computations are performed:

1) Images are scaled to a certain resolution to have image
features of comparable scale.

2) ORB[28] feature detection and description.
3) If depth information registered to the color image is

available, for example through a RGB-D camera, it is
used for feature point filtering. See below.

We have chosen ORB over other feature detectors/descrip-
tors because it offers a good compromise of computation
speed and performance[28].

For relative pose calculation, the extracted features are
not optimal in some cases. We have noted three types of
“bad” feature points with respect to their depth in the scene:
1) Features corresponding to scene parts far away in the
scene are undesirable because their position is noisy. For
example, in a stereo camera setup, large depth in relation
to the stereo baseline gives unreliable results. 2) The depth
value of features corresponding to a sharp object corner or
edge can “jump” between a point close to the camera and
a point far away from the camera. 3) Feature points on
curved objects are more prone to occlusion, i.e., they might
be obstructed when looking from a different angle.

If depth information is available, the feature points are
filtered according to the criteria above. To this end, we
implement a “cross” filter, see Fig. 3. First, feature points that
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Fig. 3. Left: cross filter showing four vectors in curved and in planar case.
Right: Exemplary filtering result. (Best viewed in color.)

are associated with a large depth value, or that are close to the
image border are discarded. Then, four neighboring points
(n1,2,3,4 in the figure) are selected. From these neighbors,
four vectors are constructed as the point difference between
the neighbors and the feature point (e.g., (f − n3) and
(n1− f)). If the sum of angles between each horizontal and
vertical pair of vectors is greater than a certain threshold,
this means that the feature point is on a non-flat surface,
and it is thus discarded. A filtering result is shown in Fig.
3. While we do not have a quantitive measure of the effect
on relative pose accuracy, the cross filter will remove many
feature points which are effectively unusable for relative pose
calculation.

D. Pose Graph Merging and Optimization

The feature points of the image pre-processing are sent to
the central workstation. There, we check if a new pose graph
edge can be introduced:

1) The bag-of-words representation is extracted.
2) Scene recognition is performed by comparing the new

BOW data against the previously collected data. We
use an open-source version of FAB-MAP[29].

3) If the probability of a scene recognition is very high,
image features in both images are matched, and we
calculate the relative pose between the two views. We
use the eight point algorithm[30], which is motivated
by section IV-A.

4) Some geometrical heuristics are checked: If the relative
pose is impossible because the relative orientation
is higher than the camera field-of-view or they are
too far apart (in case a relative position estimate is
known already), the pose graph merging is discarded.
Also, subsequent views from the same robot are not
considered (the individual SLAM systems will do just
that on their own). Otherwise, a new constraint with
the estimated relative pose is introduced in the global
pose graph.

We assume the system to have access to absolute map
scaling (e.g., using range measurements, IMUs, or odometry



from wheel encoders), which gives the (otherwise ambigu-
ous) scaling to the relative pose calculation. We thus assume
that these systems have a good estimate of their own graph
scale (including scale drift), and therefore TSLAM combines
their graphs and maps in the scale they are received.

When a new constraint is introduced because of scene
recognition, nonlinear graph optimization using least-squares
is performed. For that, we use g2o, which compares fa-
vorably against similar packages[1]. After global graph
optimization is finished, the corrected graphs are sent to
all connected robots. As we show in section V-B, this
helps every robot to keep a consistent local localization and
mapping estimate.

Graph optimization is also triggered by other events:
when a large number of new nodes is introduced without
intermediate optimization, when a low thrust value θmin is
found during optimization (see section III-E), or when one
of the robots reconnects after a disconnect.

E. Handling Network Delays in Graph Optimization

During the graph optimization, due to the time delay
of the message from the central workstation to the robot,
it sometimes occurs that the client creates new nodes in
continuation of the old, uncorrected node positions (see Fig.
4, (a) and (b)). This can result in skewed graphs, where a part
lies in the corrected position while another part immediately
adjacent to it is in the uncorrected position (Fig. 4 (c)).
To resolve this while avoiding the need for mutex locks,
we introduce the concept of the trust factor, θ. It serves
to find a linear combination of pre- and post-optimization
poses, rejecting inconsistent optimizations. θ is based on
the assumption that edge orientations exhibit greater error
than edge lengths. This assumption is justified by the fact
that edge orientation is affected by the accumulated pose
drift of all nodes since the last optimization, but edge length
is affected only by the pose drift between the two affected
nodes. Edges are updated using Eq. 1 and 2, where x1 and
x2 are the two poses defining the edge, x̂i are the optimizer
outputs and xi′ are the resulting new poses:

x1′ = x̂1 (1)

x2′ = x2 · (1− θ) + x̂2 · θ (2)

where the trust factor θ is calculated by:

θ =

(
2 · |x2 − x1| · |x̂2 − x̂1|
|x2 − x1|2 + |x̂2 − x̂1|2

)3

(3)

θ(a, b) is modelled after the following properties:
θ(a, b)� 1⇐ |a− b| � 0 and θ(a, b) = 1 ⇐⇒ a = b:

θ(a, b) =

(
1

2
(
a

b
+
b

a
)

)−3

=

(
2 · a · b
a2 + b2

)3

(4)

The effect of using θ can be seen in Fig. 4 (d), which
shows a consistent solution after two optimizations.

The trust factor θ does not take any other information into
account (such as the information matrix of the optimizer). Its
purpose is solely the post-processing of the optimized graph,

(a) (b) (c) (d)

*

 before optimization  after optimization
* introduced by scene recognition

*

Fig. 4. (a) Local pose graph, (b) local pose graph on distributed robot is
expanded, but has not yet received graph correction, (c) inconsistent graph
after partial optimization, (d) corrected, globally consistent graph.

while serving as a consistency check. Since both the pre- and
the post-optimization poses are valid, the linear combination
will also be a valid pose. For numerical reasons, we set θ = 1
for very small edge lengths.

This way, we can keep a globally consistent graph by
re-running inconsistent graph optimization until a consistent
result is achieved. We have found that a consistent solution
is reached in most cases after no more than two iterations.

IV. EXPERIMENTS AND RESULTS

A. Relative Pose Estimation

To test how accurate the relative pose estimation is, we
mounted a camera on a Kuka agilus sixx r900 industrial
robotic arm with a positional accuracy of ±0.03mm[31].
Then, we programmed the robotic arm to move along a linear
rectangular path which consisted of the following motions:
20 cm to the right, 20 cm forward, 40 cm to the left, 20 cm
backward, 20 cm to the right. The camera orientation was
kept constant. The camera could see three of our lab walls
from a distance of about 3 m. We then recorded images
every 2 cm along the path. These images were used to test
different relative pose calculation algorithms. Because this is
a monocular setup, the scale of the relative translation was
provided to the algorithms.

The results can be found in Table I and in Fig. 5. “gt”
is the ground truth data, “sacN” is the 5-point algorithm
by Nistér[32], “opencv” is openCV’s implementation of the
same 5-point algorithm, and “eightpt” is the eight-point
algorithm by Longuet-Higgins[33]. The average position
error is the point distance to ground truth in 3D, and the
rotational error is the average of the absolute roll, pitch and
yaw errors.

B. Multi-robot SLAM

We tested the overall system with two recorded datasets,
named “office” and “ground floor”. In these datasets, three
robots are individually remote-controlled to map different
parts of indoor scenery. The total mapping overlap is less
than 25 m2 each, meaning the robots mostly went separate
ways. On each robot, the Karto SLAM[34] system is em-
ployed. In a few cases, single-robot SLAM shows mapping
failures (Fig. 6 (a) and (b)). This is due to map registration
failure of Karto. Hence, the robot must rely only on odometry
for localization. This results in a weakly connected pose
graph and large pose errors. Because the map registration



TABLE I
RELATIVE POSE ESTIMATION ALGORITHM RESULTS.

Algorithm Avg. pos. err. [mm] Avg. rot. err [deg] Time [ms]
opencv 17.1± 18.1 0.20± 0.34 2.36
eightpt 13.2± 10.7 0.16± 0.15 0.183
sacN 11.9± 10.2 0.52± 0.86 15.9
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Fig. 5. Relative pose estimation illustration.

is local, the robots can not recover well from these failures
without corrective data from other robots.

Figs. 1 and 8 show the individual sub-maps and their
linkage through scene recognition when running the TSLAM
multi-robot framework. Collaborative mapping results are
seen in Figs. 7 and 9. The maps can be readily generated
by overlaying the sensor range data over the pose graphs.
All of these result have been generated automatically and in
real-time from the recorded datasets.

(a) (b)

Fig. 6. Single-robot mapping failures in the (a) “office” and (b) “ground
floor” dataset.

V. DISCUSSION

A. Relative Pose

We chose to use the eight point algorithm in our frame-
work, because it offers the best balance between runtime and
average error. We can use the positional error to have a rough
estimate of the positional uncertainty for graph optimization.

B. Multi-Robot SLAM

We note that TSLAM was able to correctly align the data
from all three robots. This means that with this framework
it is possible to map the same space with three or more
robots instead of one. Qualitatively speaking, this will lead to
faster map coverage. It can further be seen that the mapping
failures of the single-robot system could be corrected, and
the robots could re-localize. This is due to TSLAM’s abilities

Fig. 7. The global map of the “office” dataset, merged from three robots.
Total size of the map is ca. 30 m by 20 m.

Fig. 8. The three sub-maps and their connections by scene recognition
(“ground floor” dataset).

to globally correlate graphs from multiple robots, and to
perform visual scene recognition (which Karto SLAM does
not offer on its own). Therefore, if there is redundancy in
map coverage, it can help the mapping to become more
robust to failures. A shortcoming of the framework is that
the combined map can only be as good as the individual
sub-maps. Because Karto SLAM is not optimal in terms of
map accuracy, the resulting global map looks “fuzzy” and
exhibits a few angular distortions.

Fig. 9. The global map of the “ground floor” dataset, merged from three
robots. Total size of the map is ca. 150 m by 40 m.



VI. CONCLUSION

We have presented TSLAM, a software framework that fa-
cilitates implementation of multi-robot collaborative SLAM
based on existing single-robot SLAM systems. We have
proposed two additions: a graph optimization consistency
measure and a 3D keypoint filtering method, that comple-
ment the overall system. An application of our framework
using three mobile robots has been demonstrated to have
better error recovery than the equivalent single-robot case.

Future work could include taking mapping results into
account for optimization, to improve the global mapping.
Another topic of interest is localizing the graph optimiza-
tion through topological mapping, such as done in [35],
to enable large-scale application. We would also wish to
conduct further experiments with mixing two SLAM systems
concurrently, e.g., [7] and [5].
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