
Tai and Liu Robot. Biomim. (2016) 3:24
DOI 10.1186/s40638-016-0055-x

RESEARCH

Mobile robots exploration through
cnn-based reinforcement learning
Lei Tai1* and Ming Liu1,2

Abstract

 Exploration in an unknown environment is an elemental application for mobile robots. In this paper, we outlined a
reinforcement learning method aiming for solving the exploration problem in a corridor environment. The learning
model took the depth image from an RGB-D sensor as the only input. The feature representation of the depth image
was extracted through a pre-trained convolutional-neural-networks model. Based on the recent success of deep
Q-network on artificial intelligence, the robot controller achieved the exploration and obstacle avoidance abilities in
several different simulated environments. It is the first time that the reinforcement learning is used to build an explo-
ration strategy for mobile robots through raw sensor information.

Keywords: Q-learning, Deep learning, Robot exploration

© The Author(s) 2016. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license,
and indicate if changes were made.

Background
 For mobile robots, exploration in an unknown environ-
ment is always a fundamental problem in various areas,
such as rescue and mining. Typically, robot requires
complicated logic about the obstacles and the topologi-
cal mapping of environments [1, 2] designed by human
beings based on the information provided from vision or
depth sensors. It is still a challenge to achieve this task
rapidly. And high-level human-brain-like intelligence is
rarely considered in these traditional areas.

Recently, convolutional neural networks [3], also called
deep learning, have attracted more and more attentions
in artificial intelligence. This hierarchical model shows
great potential in feature representations. Regarding
the requirements mentioned above, deep reinforcement
learning (DRL), merging reinforcement learning and
deep learning, is a proper method to apply in this sce-
nario. For example, Google DeepMind implemented a
deep Q-network (DQN) [4] on 49 Atari-2600 games. This
method outperformed almost all of other state-of-the-art

AI controllers and 75% human players, without any prior
knowledge about the Atari 2600 games. It showed great
potential to apply this algorithm in other related fields
including mobile robots exploration.

In this paper, we developed a CNN-based reinforce-
ment learning method for mobile robots to explore an
unknown environment based on raw sensor information.
Not like the DQN mentioned above, we separated this
learning approach in two separate networks, the percep-
tion and the control networks. Firstly, we built a super-
vised learning model as the perception network by taking
the depth information as the input and the command of
the robot as the output. The datum was manually labeled
with control commands to tune the moving directions
of the mobile robot. This supervised learning model was
implemented as three convolutional layers. Secondly, the
control network was constructed with three fully con-
nected hidden layers to mimic the Q-value approxima-
tion of the reinforcement learning procedure by taking
the feature representations extracted by the perception
networks as the input. The feature representations were
the output of the last convolutional layer of the percep-
tion network trained before. This reinforcement learning
framework was defined as a CNN-based reinforcement
learning method. Particularly, we stressed the following
contributions:

Open Access

*Correspondence: lei.tai@my.cityu.edu.hk
1 Department of Mechanical and Biomedical Engineering, City University
of Hong Kong, Tat Chee Avenue, Kowloon Tong 999077, Hong Kong
Full list of author information is available at the end of the article

http://orcid.org/0000-0003-0221-3467
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40638-016-0055-x&domain=pdf

Page 2 of 8Tai and Liu Robot. Biomim. (2016) 3:24

 • We designed a revised version of DQN network for
a mobile robot to explore an unknown environment
only receiving the raw sensor information as the
interaction with the environment.

 • The model was validating in several simulated envi-
ronments. The experiments in simulated environ-
ments reflected the effectiveness of the method.

The training and construction of the perception net-
work were based on our previous work [5]. The prelimi-
nary experiment was described in [6]. The rest of paper
is organized as follows: We present related works in rein-
forcement learning and CNN perception in Related work
section. In Implementation details section, we describe
implementation about the origin DQN and our CNN-
based reinforcement learning method. The detail of the
training and tests is then presented in Experiments and
results section. At the end, Conclusion section concludes
the paper and introduces the future work.

Related work
Reinforcement learning in robotics
Reinforcement learning (RL) [7] is an efficient method
for robotics to interact with the environment and to
learn skills by self-motivation. With an appropriate and
abstract reward, the robot can learn a complex strategy
without ground truth labeled by human beings as refer-
ences. It was just applied on mastering the strategy of GO
(an ancient Chinese board game which was regarded as
the most challenging task for artificial intelligence) [8]
and overcame the best human GO player. It indicated the
great feasibility of reinforcement learning in other fields.
RL was also applied on an autonomous helicopter flight
[9] and autonomous inverted helicopter flight [10], by
collecting the flight data and learning a nonlinear model
of the aerodynamics.

Reinforcement learning was also proved to improve the
motion behavior of a humanoid robot to react to visu-
ally identified objects substantially [11], by building an
autonomous strategy with little prior knowledge. In this
application, the robot showed a continuously evolved
performance with time.

Most of the reinforcement learning methods for robot-
ics were based on state information like joint states of
robot arms. To our knowledge, raw image sensor infor-
mation has never been considered directly.

CNN in perception
Convolutional neural network (CNN) is a classic visual
learning method. With the development of large-scale
computing and GPU accelerating, huge CNN frame-
works can be set with tens of convolutional layers. The

newest development of residual network [12] applied in
image classification even used more than 150 convolu-
tional layers.

Normally, CNN was used to solve a classification prob-
lem with a softmax layer, such as Imagenet classification
[13, 14] and face recognition [3]. With a regression layer
to optimal the Euclidean loss, the feature maps extracted
by CNN can also be applied to key points searching
problem [15, 16]. Computer-vision-based recogni-
tion methods are mainly feature detection and extrac-
tion [17–19], while CNN extracts this feature model by
self-learning.

In terms of robotics, CNN was also used to perceive
environment information for visual navigation [20].
However, a supervised-learning-based method requires a
complicated and time-consuming training period and the
trained model cannot be applied in a different environ-
ment directly.

Methods
Traveling in an unknown environment with obsta-
cle avoidance ability is the main target of this paper.
This task was defined as controlling a ground-moving
robot in an environment without any collisions with the
obstacles. For the perception network, CNN supervised
learning model for the extraction of feature representa-
tions was trained in our previous work [5]. The training
dataset of perception network was sampled from a cor-
ridor environment, through teleoperation from a human
being as labeling. Based on this perception model, the
robot can navigate without collision automatically in
the similar real-world corridor environment. The super-
vised learning model is quite appropriate to perceive an
environment [20]. And the experimental results in [5]
proved that the feature representations can be effectively
regarded as abstracted information for the environment
to some extends. However, the serious overfitting of
supervised learning model limited the extension of the
trained model. To be rapidly adapted to some new envi-
ronment, we proposed the control network so that robots
can be adapted to some new environment rapidly. Based
on the advantage of reinforcement learning, the extra
labeling process for the new environment was also elimi-
nated. The implementation of the experiment includes
three parts:

 • a simulated 3D environment in Gazebo for a robot to
explore.

 • a CNN-based reinforcement learning control frame-
work.

 • a simulated Turtlebot with a Kinect sensor in Gazebo
controlled by the output of the proposed model.

Page 3 of 8Tai and Liu Robot. Biomim. (2016) 3:24

DQN
DQN defined the tasks between the agents and the envi-
ronments [4, 21] in Atari 2600 games. The environment
was set as ε. At each step, the agent selected an action
at from the action sets of the game and observed a dis-
played image xt from the current screen. The change
in the game score rt was regarded as the reward for the
action with the related state. For a standard reinforce-
ment learning procedure, all of these game sequences
st were considered as a Markov decision process
directly (MDP), where st = x1, a1, x2, . . . , at−1, xt.
Defining the discounted reward for the future by a
factor γ, the sum of the future reward until the termi-
nation of the game would be Rt =

∑T
t ′=t γ

t ′−t rt ′. T
means the termination time step of the game. The
target was to maximize the action-value function
Q∗(s, a) = maxπ E[Rt |st = s, at = a,π], where π is the
strategy for choosing of best action. From the Bellman
equation, it is equal to maximize the expected value
of r + γQ∗(s′, a′), if the optimal value Q∗(s, a) of the
sequence at the next time step is known as

Not using iterative updating method to optimal the equa-
tion, it is common to estimate the equation by using a
function approximator. Q-network in DQN was such
a neural network function approximator with weights
θ and Q(s, a, θ) ≈ Q∗(s, a). Then, the real-time optimal
Q-value for (s, a) can be estimated as

The loss function to train the Q-network is

where yi is the target and it is calculated by the equa-
tion for Q∗(s, a) mentioned above based on reward and
the estimation for next state s′. ρ(·) is the probability dis-
tribution of sequences s and a. By minimizing the loss
between yi and Q(s, a), motivate the weights θi to con-
verge. The gradient of the loss function is shown below:

CNN‑based reinforcement learning system
To accomplish the task of exploration, we simplified
the DQN [4] into two separate networks, the percep-
tion network and the control network. For the percep-
tion network, a 3-layer CNN framework was built to do
the preprocessing procedure. Figure 1 shows the CNN
structure in detail. By three times convolution, pooling,
and rectifier activation, the feature maps of the inputs

Q∗(s, a) = Es′∼ε

[

r + γ max
a′

Q∗(s′, a′)|s, a

]

Q∗(s, a) = Es′∼ε

[

r + γ max
a′

Q∗(s′, a′; θi)|s, a

]

Li(θi) = E(s,a)∼ρ(·)

[

(yi − Q(s, a; θi))
2
]

∇θi Li(θi) = Es,a∼ρ(·);s′∼ε

[

(yi − Q(s, a; θi))∇θiQ(s, a; θi)
]

were extracted. A softmax layer was implemented to get
the output distribution of the moving commands. When
training the network, we controlled the robot to explore
in an environment and labeled the depth image from
Kinect RGB-D sensor. The related control command
from a human being was labeled as the ground truth.
The parameters, training and analysis of this CNN model
were introduced in our previous work [5] .

In the control network, the reinforcement learning pro-
cedure, the trained model mentioned above was used to
forward every input depth image of real time and get the
feature maps of the depth image. Feature maps are the
output of the last ReLU layer in Fig. 1. Note that we did
not use the output command from the perception net-
work directly. The feature representations consisted of
64 × 20× 15 matrices. Figure 2 shows the structure of
the neural network to estimate the Q-value of the control
network. The feature representations were regarded as
the states st as described in DQN section. In the explora-
tion period, the depth image from Kinect was firstly pro-
cessed by the pre-trained perception network to be the
real-time state of the mobile robot. After the activation
of the action, the new depth image is captured and pro-
cess to be the next time state st+1. The real-time state st
is memorized with the related action at, reward r and the
next state st+1 as a transition. As the same memory strat-
egy in DQN, we reserved a replay memory to save the
transition. At the same time, we randomly chose a batch
of transitions to update the weights θi of the control net-
work through stochastic gradient descent method.

The reward function for the control network had two
different feedback values, one for normal moving and
one for the collision with the obstacles. The system
stared at the Turtlebot state by checking the minimum
depth between the Turtlebot and the obstacles based on
the sensor receiving from the Kinect. Table 2 shows the
declaration of the reward setting. Here we set the thresh-
old to be 0.6 meter, keeping enough space between the
robot and the obstacle in exploration. When the mini-
mum depth was lower than the threshold or the robot
location did not change for a period of time, we set the
robot state to a termination and robot was reset to the
start position. The reward for a termination is −50. At
that time, we defined that a collision happened between
the robot and an obstacle. Otherwise, if the robot kept
moving, the reward was 1 to encourage moving. In the
exploration procedure, the only target was to achieve
obstacle avoidance, so the feedback of collision should
be much larger than the normal moving. When updating
the weights, if the reward was −50, that means the robot
collide with an obstacle, and the target value for the state
and action in this transition would also be −50. On the
other hand, the target would be calculated by Bellman

Page 4 of 8Tai and Liu Robot. Biomim. (2016) 3:24

Equation if the robot state in this transition was keep
moving. Algorithm 1 presents the whole framework of
the control network training procedure. In every episode
of the exploration, randomly choosing the command
would increase the variety of the training batch. The ǫ
-greedy policy was implemented in the control network
as well. The randomness would be less and less with the
decreasing of ǫ. Every time, after the execution of the
chosen moving command, the new feature representa-
tions would be captured with rewarding 1, or the robot
collided with the obstacle with rewarding −50. After
storing the transition, the weights of Q-network were
updated by the batch of transitions which were chosen
randomly as well.

Fig. 1 Structure of the perception network. Depth images after downsampling are fed into the model. Three convolutional layers with pooling
and rectifier layers behind are connected together. After that, feature maps of every input are fully connected and fed to the softmax layer of the
classifier

Fig. 2 Feature maps extracted from the perception network are the
input of the control network. They are reshaped to a one-dimensional
vector. After three fully connected hidden layers of a neural network,
it is transformed to the three commands for moving directions as the
output

Page 5 of 8Tai and Liu Robot. Biomim. (2016) 3:24

Training result
The control network learning system experienced 15,000
iterations in both of the two simulated environments.

Figure 4 shows the loss converging curves in the whole
learning period. In every iteration step, the Euclidean loss
between target Q-value and the predicted Q-value was
calculated. The loss in Fig. 4 is the average value of the
whole training batch in related iteration step. Because
we chose the batch randomly in every step, the differ-
ent training batch sets between the continues gradient
descent steps led the apparent fluctuation in Fig. 4 in
both of the environments. It also shows that the loss of
both of the environments decreased rapidly in first 1500
iteration steps. And after that, the loss in the straight cor-
ridor was stable. But the convergence of the loss in the
circular corridor environment was still decreasing appar-
ently. That should be caused by the complexity of the
depth information which needs more time to train the
model.

Test result
In the training process, the weights of the Q-network
were saved regularly in every 300 steps of iteration. For
both environments, we randomly chose several feature
representations in different states as the test set, which

Environment design in Gazebo
Gazebo was used to build a simulation environment in
this project. The robot used was a Turtlebot with two dif-
ferential wheels, and a Kinect sensor was mounted on it.
The whole project was implemented based on the inter-
faces of robot operation system (ROS). The system tracked
the depth information from Turtlebot in Gazebo simu-
lated environment. The command related to the highest
Q-value in the control network would be transformed to
the angel velocity for the Turtlebot by ROS topic.

Results and discussion
Both of the feature learning in perception network and
the updated of the control network weights were based
on Caffe [22], a popular toolkit for deep learning. To
evaluate the whole learning system, two different kinds of
environments were designed as shown in Fig. 3. The first
one consisted of a direct straight corridor. The other one
consisted of a circularly connected corridor with more
complicated depth information. Table 1 shows the train-
ing parameters and their values in gradient descent pro-
cedure of the control network learning implemented by
Caffe. The step size means that the learning rate will mul-
tiply gamma after first 10,000 iterations, which means the
learning rate of last 5000 iterations is 0.0000001.

Page 6 of 8Tai and Liu Robot. Biomim. (2016) 3:24

correspond to different positions of the Turtlebot in the
simulated world. Figure 5 shows the average Q-value of
the test set for 3 different moving commands by using the
trained weights of every 300 steps of the iteration.

It seems that all of the 3 target values converged toward
a state with a certain value. The convergences of Q-value
proved the stability of the control network system. Along
with the shrinking of the learning rate after 10,000 steps

of iteration, the fluctuation of the value was also reduced,
especially for the straight corridor environment. The
increment of the Q-value in the training procedure indi-
cated that the control network was much more reliable
with longer training time.

With the reward mentioned above, a direct feedback
was the final scores the robot can achieve, with the
trained strategy to choose the command related to the
highest Q-value. The higher scores also meant that the
Turtlebot would keep moving in the environment for a
longer time and avoid more obstacles. But there was no
apparent relation between the scores and the moving dis-
tance because the Turtlebot might move along a tortuous
path. The width of the road in the simulated world was
narrow enough that the robot cannot keep turning along
the same direction rewarding positive infinite scores.

The trained model in every 1000 steps of iteration
was tested 5 times in the related environment, and the
result is shown in Fig. 6. It shows that the test scores
of both environments increased at the first 2000 itera-
tions. Scores tested in straight corridor world keep con-
sistent near −20, which means that the robot moved 30

Fig. 4 Converging curves of batch loss in iteration procedure. a
Straight corridor training loss, b circular corridor training loss

Table 1 Training parameters and their values

Parameter Value

Batch size 32

Replay memory size 5000

Discount factor 0.85

Learning rate 0.000001

Gradient momentum 0.9

Max iteration 15,000

Step size 10,000

Gamma 0.1

Table 2 Setting of reward

State Reward value

Collision or stop −50

Keep moving 1

Fig. 3 Simulation environments. a Straight corridor, b circular cor-
ridor

Page 7 of 8Tai and Liu Robot. Biomim. (2016) 3:24

steps, with terminated reward −50. It was enough to
arrive at the end of the straight corridor. The other one
in the circular corridor environment was increased dis-
continuously. The highest test value in circular corridor

environment was 80, which means that the robot moved
130 steps, with terminated reward −50. The Turtlebot
should have finished a lap in that situation. We can imag-
ine that the robot should keep moving forever along the
circular corridor environment with infinite scores as a
perfect model. But in the test, the robot will finally collide
with obstacles every time. It is possible that the model is
still not robust enough.

A more complicated simulated environment was also
constructed as shown in Fig. 7. More obstacles were
located to this simulated environment. However, no mat-
ter how long the control network was trained in this new
environment, the exploration could not be accomplished.
Even several more layers were added to the control net-
work to improve the nonlinearity for complicated mod-
els, it sill could not converge. It is possible that the fixed
pre-trained perception network limits the extension of
the whole model. As mentioned before, the overfitting of
the supervised learning model might not represent the
new environment in Fig. 7 good enough.

Conclusions
This paper presented a new approach to realize self-
motivated exploration in an unknown environment by a
CNN-based reinforcement learning network. The pro-
posed modular network architecture provided a con-
venience way to transfer and update in the future. By
separating the deep Q-network to a perception mod-
ule and a control module, the exploration task was

Fig. 5 Q-value of the evaluation set calculated by the model at differ-
ent iteration stages. a Q-value test for straight corridor, b Q-value test
for circular corridor

Fig. 6 Average score of 5 times evaluation by using the trained
model of every 1000 iteration steps

Fig. 7 The more complicated environment for further experiment.
But the proposed CNN-based reinforcement learning model is not
converged to this new environment

Page 8 of 8Tai and Liu Robot. Biomim. (2016) 3:24

accomplished effectively. The test results in several simu-
lated environments showed that the Turtlebot achieved
obstacle avoidance ability, and it could travel freely in the
simulated environment with the strategy learned by itself.

However, the failure in the more complicated environ-
ment also reflected the limitation of this paper. And sev-
eral accessible aspects should be considered in the future
to improve it. The whole DQN framework in real-time
exploration should be implemented to train end-to-end.
That means there should be no separated perception net-
work for the feature representation. In the reinforcement
learning procedure, the weights of the perception module
should be updated at the same time. The perception abil-
ity of the system would be developed and adapted to the
new environment naturally. Except for the depth infor-
mation, the raw RGB image should also be considered
as the input. With GPU accelerating, this should be also
feasible.

The reward function should be redesigned as well
because now every non-collision state was rewarded with
the same score, which limits the interactions between the
state and the robot in very few conditions. Finally, this
model should be transformed to the application in real-
world scenario.

Authors’ contributions
LT built the experiment system, implemented the algorithm, analyzed the
data and wrote the manuscript. ML proposed the main idea and revised the
manuscript. Both authors read and approved the final manuscript.

Author details
1 Department of Mechanical and Biomedical Engineering, City University
of Hong Kong, Tat Chee Avenue, Kowloon Tong 999077, Hong Kong. 2 Depart-
ment of Electronic and Computer Engineering, HKUST, Clear Water Bay,
Kowloon 999077, Hong Kong.

Acknowledgements
This work was sponsored by the Research Grant Council of Hong Kong SAR
Government, China, under project No. 16212815, 21202816 and National
Natural Science Foundation of China No. 6140021318, Shenzhen Science,
Technology and Innovation Comission (SZSTI) JCYJ20160428154842603 and
JCYJ20160401100022706.

Competing interests
The authors declare that they have no competing interests.

Received: 3 August 2016 Accepted: 20 November 2016

References
 1. Liu M, Colas F, Oth L, Siegwart R. Incremental topological segmentation

for semi-structured environments using discretized GVG. Auton Robots.
2015;38(2):143–60.

 2. Liu M, Colas F, Pomerleau F, Siegwart R. A Markov semi-supervised
clustering approach and its application in topological map extraction. In:
Intelligent robots and systems (IROS), 2012 IEEE/RSJ international confer-
ence on. IEEE; 2012. p. 4743–48.

 3. Lawrence S, Giles CL, Tsoi AC, Back AD. Face recognition: a convolutional
neural-network approach. Neural Netw IEEE Trans. 1997;8(1):98–113.

 4. Mnih V, Kavukcuoglu K, Silver D, Rusu AA, Veness J, Bellemare MG, Graves
A, Riedmiller M, Fidjeland AK, Ostrovski G, et al. Human-level control
through deep reinforcement learning. Nature. 2015;518(7540):529–33.

 5. Tai L, Li S, Liu M. A deep-network solution towards model-less obstacle
avoidance. In: Intelligent robots and systems (IROS), 2016 IEEE/RSJ inter-
national conference on. IEEE; 2016.

 6. Tai L, Liu M. A robot exploration strategy based on q-learning network. In:
Real-time computing and robotics (RCAR), 2016 IEEE international confer-
ence on. IEEE; 2016

 7. Sutton RS, Barto AG. Reinforcement learning: an introduction, vol. 1.
Cambridge: The MIT Press; 1998.

 8. Silver D, Huang A, Maddison CJ, Guez A, Sifre L, van den Driessche G,
Schrittwieser J, Antonoglou I, Panneershelvam V, Lanctot M, Dieleman
S, Grewe D, Nham J, Kalchbrenner N, Sutskever I, Lillicrap T, Leach M,
Kavukcuoglu K, Graepel T, Hassabis D. Mastering the game of go with
deep neural networks and tree search. Nature. 2016;529(7587):484–9.

 9. Kim HY, Jordan MI, Sastrys S. Ng AY. Autonomous Helicopter Flight via
Reinforcement Learning. In: Thrun S, Saul SK, Schölkopf PB, editors.
Advances in Neural Information Processing Systems. Cambridge, MA,
USA: The MIT Press; 2004.

 10. Ng AY, Coates A, Diel M, Ganapathi V, Schulte J, Tse B, Berger E, Liang E.
In: Ang MH, Khatib O, editors. Autonomous inverted helicopter flight via
reinforcement learning. Experimental Robotics IX. Berlin: Springer; 2006.
p. 363–72.

 11. Jamone L, Natale L, Nori F, Metta G, Sandini G. Autonomous online learn-
ing of reaching behavior in a humanoid robot. Int J Humanoid Robot.
2012;9(03):1250017.

 12. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition.
arXiv preprint arXiv:1512.03385 (2015).

 13. Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with
deep convolutional neural networks. In: Pereira F, Burges CJC, Bot-
tou L, Weinberger KQ, editors. Advances in neural information
processing systems; 2012. p. 1097–105. http://papers.nips.cc/book/
advances-in-neural-information-processing-systems-25-2012.

 14. Li S, Huang H, Zhang Y, Liu M. A fast multi-scale convolutional neural
network for object recognition. In: Real-time computing and robotics
(RCAR), 2015 IEEE international conference on. IEEE; 2015.

 15. Sun Y, Wang X, Tang X. Deep convolutional network cascade for facial
point detection. In: Proceedings of the IEEE conference on computer
vision and pattern recognition; 2013. p. 3476–83

 16. Chen H, Wang P, Liu M. From co-saliency detection to object co-seg-
mentation: a unified multi-stage low-rank matrix recovery approach. In:
Robotics and biomimetics (ROBIO), 2015 IEEE international conference
on. IEEE; 2015.

 17. Liu M, Scaramuzza D, Pradalier C, Siegwart R, Chen Q. Scene recognition
with omnidirectional vision for topological map using lightweight adap-
tive descriptors. In: Intelligent robots and systems, 2009. IROS 2009. IEEE/
RSJ international conference on. IEEE; 2009, p. 116–121.

 18. Liu M, Siegwart R. Topological mapping and scene recognition with
lightweight color descriptors for an omnidirectional camera. Robot. IEEE
Trans. 2014;30(2):310–24.

 19. Liu M, Alper BT, Siegwart R. An adaptive descriptor for uncalibrated omni-
directional images—towards scene reconstruction by trifocal tensor. In:
IEEE international conference on robotics and automation, 2013; 2013.

 20. Giusti A, Guzzi J, Ciresan D, He FL, Rodriguez JP, Fontana F, Faessler M,
Forster C, Schmidhuber J, Di Caro G, et al. A machine learning approach
to visual perception of forest trails for mobile robots. Robot Autom Lett
IEEE. 2015;PP:1.

 21. Mnih V, Kavukcuoglu K, Silver D, Graves A, Antonoglou I, Wierstra D, Ried-
miller M. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602 (2013).

 22. Jia Y, Shelhamer E, Donahue J, Karayev S, Long J, Girshick R, Guadarrama
S, Darrell T. Caffe: Convolutional architecture for fast feature embedding.
arXiv preprint arXiv:1408.5093 (2014).

http://arxiv.org/abs/1512.03385
http://papers.nips.cc/book/advances-in-neural-information-processing-systems-25-2012
http://papers.nips.cc/book/advances-in-neural-information-processing-systems-25-2012
http://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1408.5093

	Mobile robots exploration through cnn-based reinforcement learning
	Abstract
	Background
	Related work
	Reinforcement learning in robotics
	CNN in perception

	Methods
	DQN
	CNN-based reinforcement learning system
	Environment design in Gazebo

	Results and discussion
	Training result
	Test result

	Conclusions
	Authors’ contributions
	References

