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cnn-based reinforcement learning
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Abstract 

 Exploration in an unknown environment is an elemental application for mobile robots. In this paper, we outlined a 
reinforcement learning method aiming for solving the exploration problem in a corridor environment. The learning 
model took the depth image from an RGB-D sensor as the only input. The feature representation of the depth image 
was extracted through a pre-trained convolutional-neural-networks model. Based on the recent success of deep 
Q-network on artificial intelligence, the robot controller achieved the exploration and obstacle avoidance abilities in 
several different simulated environments. It is the first time that the reinforcement learning is used to build an explo-
ration strategy for mobile robots through raw sensor information.
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Background
 For mobile robots, exploration in an unknown environ-
ment is always a fundamental problem in various areas, 
such as rescue and mining. Typically, robot requires 
complicated logic about the obstacles and the topologi-
cal mapping of environments [1, 2] designed by human 
beings based on the information provided from vision or 
depth sensors. It is still a challenge to achieve this task 
rapidly. And high-level human-brain-like intelligence is 
rarely considered in these traditional areas.

Recently, convolutional neural networks [3], also called 
deep learning, have attracted more and more attentions 
in artificial intelligence. This hierarchical model shows 
great potential in feature representations. Regarding 
the requirements mentioned above, deep reinforcement 
learning (DRL), merging reinforcement learning and 
deep learning, is a proper method to apply in this sce-
nario. For example, Google DeepMind implemented a 
deep Q-network (DQN) [4] on 49 Atari-2600 games. This 
method outperformed almost all of other state-of-the-art 

AI controllers and 75% human players, without any prior 
knowledge about the Atari 2600 games. It showed great 
potential to apply this algorithm in other related fields 
including mobile robots exploration.

In this paper, we developed a CNN-based reinforce-
ment learning method for mobile robots to explore an 
unknown environment based on raw sensor information. 
Not like the DQN mentioned above, we separated this 
learning approach in two separate networks, the percep-
tion and the control networks. Firstly, we built a super-
vised learning model as the perception network by taking 
the depth information as the input and the command of 
the robot as the output. The datum was manually labeled 
with control commands to tune the moving directions 
of the mobile robot. This supervised learning model was 
implemented as three convolutional layers. Secondly, the 
control network was constructed with three fully con-
nected hidden layers to mimic the Q-value approxima-
tion of the reinforcement learning procedure by taking 
the feature representations extracted by the perception 
networks as the input. The feature representations were 
the output of the last convolutional layer of the percep-
tion network trained before. This reinforcement learning 
framework was defined as a CNN-based reinforcement 
learning method. Particularly, we stressed the following 
contributions:
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  • We designed a revised version of DQN network for 
a mobile robot to explore an unknown environment 
only receiving the raw sensor information as the 
interaction with the environment.

  • The model was validating in several simulated envi-
ronments. The experiments in simulated environ-
ments reflected the effectiveness of the method.

The training and construction of the perception net-
work were based on our previous work [5]. The prelimi-
nary experiment was described in [6]. The rest of paper 
is organized as follows: We present related works in rein-
forcement learning and CNN perception in Related work 
section. In Implementation details section, we describe 
implementation about the origin DQN and our CNN-
based reinforcement learning method. The detail of the 
training and tests is then presented in Experiments and 
results section. At the end, Conclusion section concludes 
the paper and introduces the future work.

Related work
Reinforcement learning in robotics
Reinforcement learning (RL) [7] is an efficient method 
for robotics to interact with the environment and to 
learn skills by self-motivation. With an appropriate and 
abstract reward, the robot can learn a complex strategy 
without ground truth labeled by human beings as refer-
ences. It was just applied on mastering the strategy of GO 
(an ancient Chinese board game which was regarded as 
the most challenging task for artificial intelligence) [8] 
and overcame the best human GO player. It indicated the 
great feasibility of reinforcement learning in other fields. 
RL was also applied on an autonomous helicopter flight 
[9] and autonomous inverted helicopter flight [10], by 
collecting the flight data and learning a nonlinear model 
of the aerodynamics.

Reinforcement learning was also proved to improve the 
motion behavior of a humanoid robot to react to visu-
ally identified objects substantially [11], by building an 
autonomous strategy with little prior knowledge. In this 
application, the robot showed a continuously evolved 
performance with time.

Most of the reinforcement learning methods for robot-
ics were based on state information like joint states of 
robot arms. To our knowledge, raw image sensor infor-
mation has never been considered directly.

CNN in perception
Convolutional neural network (CNN) is a classic visual 
learning method. With the development of large-scale 
computing and GPU accelerating, huge CNN frame-
works can be set with tens of convolutional layers. The 

newest development of residual network [12] applied in 
image classification even used more than 150 convolu-
tional layers.

Normally, CNN was used to solve a classification prob-
lem with a softmax layer, such as Imagenet classification 
[13, 14] and face recognition [3]. With a regression layer 
to optimal the Euclidean loss, the feature maps extracted 
by CNN can also be applied to key points searching 
problem [15, 16]. Computer-vision-based recogni-
tion methods are mainly feature detection and extrac-
tion [17–19], while CNN extracts this feature model by 
self-learning.

In terms of robotics, CNN was also used to perceive 
environment information for visual navigation [20]. 
However, a supervised-learning-based method requires a 
complicated and time-consuming training period and the 
trained model cannot be applied in a different environ-
ment directly.

Methods
Traveling in an unknown environment with obsta-
cle avoidance ability is the main target of this paper. 
This task was defined as controlling a ground-moving 
robot in an environment without any collisions with the 
obstacles. For the perception network, CNN supervised 
learning model for the extraction of feature representa-
tions was trained in our previous work [5]. The training 
dataset of perception network was sampled from a cor-
ridor environment, through teleoperation from a human 
being as labeling. Based on this perception model, the 
robot can navigate without collision automatically in 
the similar real-world corridor environment. The super-
vised learning model is quite appropriate to perceive an 
environment [20]. And the experimental results in [5] 
proved that the feature representations can be effectively 
regarded as abstracted information for the environment 
to some extends. However, the serious overfitting of 
supervised learning model limited the extension of the 
trained model. To be rapidly adapted to some new envi-
ronment, we proposed the control network so that robots 
can be adapted to some new environment rapidly. Based 
on the advantage of reinforcement learning, the extra 
labeling process for the new environment was also elimi-
nated. The implementation of the experiment includes 
three parts:

  • a simulated 3D environment in Gazebo for a robot to 
explore.

  • a CNN-based reinforcement learning control frame-
work.

  • a simulated Turtlebot with a Kinect sensor in Gazebo 
controlled by the output of the proposed model.
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DQN
DQN defined the tasks between the agents and the envi-
ronments [4, 21] in Atari 2600 games. The environment 
was set as ε. At each step, the agent selected an action 
at from the action sets of the game and observed a dis-
played image xt from the current screen. The change 
in the game score rt was regarded as the reward for the 
action with the related state. For a standard reinforce-
ment learning procedure, all of these game sequences 
st were considered as a Markov decision process 
directly (MDP), where st = x1, a1, x2, . . . , at−1, xt.  
Defining the discounted reward for the future by a 
factor γ, the sum of the future reward until the termi-
nation of the game would be Rt =

∑T
t ′=t γ

t ′−t rt ′. T  
means the termination time step of the game. The 
target was to maximize the action-value function 
Q∗(s, a) = maxπ E[Rt |st = s, at = a,π ], where π is the 
strategy for choosing of best action. From the Bellman 
equation, it is equal to maximize the expected value 
of r + γQ∗(s′, a′), if the optimal value Q∗(s, a) of the 
sequence at the next time step is known as

Not using iterative updating method to optimal the equa-
tion, it is common to estimate the equation by using a 
function approximator. Q-network in DQN was such 
a neural network function approximator with weights 
θ and Q(s, a, θ) ≈ Q∗(s, a). Then, the real-time optimal 
Q-value for (s, a) can be estimated as

The loss function to train the Q-network is

where yi is the target and it is calculated by the equa-
tion for Q∗(s, a) mentioned above based on reward and 
the estimation for next state s′. ρ(·) is the probability dis-
tribution of sequences s and a. By minimizing the loss 
between yi and Q(s, a), motivate the weights θi to con-
verge. The gradient of the loss function is shown below:

CNN‑based reinforcement learning system
To accomplish the task of exploration, we simplified 
the DQN [4] into two separate networks, the percep-
tion network and the control network. For the percep-
tion network, a 3-layer CNN framework was built to do 
the preprocessing procedure. Figure  1 shows the CNN 
structure in detail. By three times convolution, pooling, 
and rectifier activation, the feature maps of the inputs 

Q∗(s, a) = Es′∼ε

[

r + γ max
a′

Q∗(s′, a′)|s, a

]

Q∗(s, a) = Es′∼ε

[

r + γ max
a′

Q∗(s′, a′; θi)|s, a

]

Li(θi) = E(s,a)∼ρ(·)

[

(yi − Q(s, a; θi))
2
]

∇θi Li(θi) = Es,a∼ρ(·);s′∼ε

[

(yi − Q(s, a; θi))∇θiQ(s, a; θi)
]

were extracted. A softmax layer was implemented to get 
the output distribution of the moving commands. When 
training the network, we controlled the robot to explore 
in an environment and labeled the depth image from 
Kinect RGB-D sensor. The related control command 
from a human being was labeled as the ground truth. 
The parameters, training and analysis of this CNN model 
were introduced in our previous work [5] .

In the control network, the reinforcement learning pro-
cedure, the trained model mentioned above was used to 
forward every input depth image of real time and get the 
feature maps of the depth image. Feature maps are the 
output of the last ReLU layer in Fig. 1. Note that we did 
not use the output command from the perception net-
work directly. The feature representations consisted of 
64 × 20× 15 matrices. Figure  2 shows the structure of 
the neural network to estimate the Q-value of the control 
network. The feature representations were regarded as 
the states st as described in DQN section. In the explora-
tion period, the depth image from Kinect was firstly pro-
cessed by the pre-trained perception network to be the 
real-time state of the mobile robot. After the activation 
of the action, the new depth image is captured and pro-
cess to be the next time state st+1. The real-time state st 
is memorized with the related action at, reward r and the 
next state st+1 as a transition. As the same memory strat-
egy in DQN, we reserved a replay memory to save the 
transition. At the same time, we randomly chose a batch 
of transitions to update the weights θi of the control net-
work through stochastic gradient descent method.

The reward function for the control network had two 
different feedback values, one for normal moving and 
one for the collision with the obstacles. The system 
stared at the Turtlebot state by checking the minimum 
depth between the Turtlebot and the obstacles based on 
the sensor receiving from the Kinect. Table 2 shows the 
declaration of the reward setting. Here we set the thresh-
old to be 0.6 meter, keeping enough space between the 
robot and the obstacle in exploration. When the mini-
mum depth was lower than the threshold or the robot 
location did not change for a period of time, we set the 
robot state to a termination and robot was reset to the 
start position. The reward for a termination is −50. At 
that time, we defined that a collision happened between 
the robot and an obstacle. Otherwise, if the robot kept 
moving, the reward was 1 to encourage moving. In the 
exploration procedure, the only target was to achieve 
obstacle avoidance, so the feedback of collision should 
be much larger than the normal moving. When updating 
the weights, if the reward was −50, that means the robot 
collide with an obstacle, and the target value for the state 
and action in this transition would also be −50. On the 
other hand, the target would be calculated by Bellman 



Page 4 of 8Tai and Liu  Robot. Biomim.  (2016) 3:24 

Equation if the robot state in this transition was keep 
moving. Algorithm  1 presents the whole framework of 
the control network training procedure. In every episode 
of the exploration, randomly choosing the command 
would increase the variety of the training batch. The ǫ
-greedy policy was implemented in the control network 
as well. The randomness would be less and less with the 
decreasing of ǫ. Every time, after the execution of the 
chosen moving command, the new feature representa-
tions would be captured with rewarding 1, or the robot 
collided with the obstacle with rewarding −50. After 
storing the transition, the weights of Q-network were 
updated by the batch of transitions which were chosen 
randomly as well.

Fig. 1 Structure of the perception network. Depth images after downsampling are fed into the model. Three convolutional layers with pooling 
and rectifier layers behind are connected together. After that, feature maps of every input are fully connected and fed to the softmax layer of the 
classifier

Fig. 2 Feature maps extracted from the perception network are the 
input of the control network. They are reshaped to a one-dimensional 
vector. After three fully connected hidden layers of a neural network, 
it is transformed to the three commands for moving directions as the 
output
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Training result
The control network learning system experienced 15,000 
iterations in both of the two simulated environments.

Figure 4 shows the loss converging curves in the whole 
learning period. In every iteration step, the Euclidean loss 
between target Q-value and the predicted Q-value was 
calculated. The loss in Fig.  4 is the average value of the 
whole training batch in related iteration step. Because 
we chose the batch randomly in every step, the differ-
ent training batch sets between the continues gradient 
descent steps led the apparent fluctuation in Fig.  4 in 
both of the environments. It also shows that the loss of 
both of the environments decreased rapidly in first 1500 
iteration steps. And after that, the loss in the straight cor-
ridor was stable. But the convergence of the loss in the 
circular corridor environment was still decreasing appar-
ently. That should be caused by the complexity of the 
depth information which needs more time to train the 
model.

Test result
In the training process, the weights of the Q-network 
were saved regularly in every 300 steps of iteration. For 
both environments, we randomly chose several feature 
representations in different states as the test set, which 

Environment design in Gazebo
Gazebo was used to build a simulation environment in 
this project. The robot used was a Turtlebot with two dif-
ferential wheels, and a Kinect sensor was mounted on it. 
The whole project was implemented based on the inter-
faces of robot operation system (ROS). The system tracked 
the depth information from Turtlebot in Gazebo simu-
lated environment. The command related to the highest 
Q-value in the control network would be transformed to 
the angel velocity for the Turtlebot by ROS topic.

Results and discussion
Both of the feature learning in perception network and 
the updated of the control network weights were based 
on Caffe [22], a popular toolkit for deep learning. To 
evaluate the whole learning system, two different kinds of 
environments were designed as shown in Fig. 3. The first 
one consisted of a direct straight corridor. The other one 
consisted of a circularly connected corridor with more 
complicated depth information. Table 1 shows the train-
ing parameters and their values in gradient descent pro-
cedure of the control network learning implemented by 
Caffe. The step size means that the learning rate will mul-
tiply gamma after first 10,000 iterations, which means the 
learning rate of last 5000 iterations is 0.0000001.
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correspond to different positions of the Turtlebot in the 
simulated world. Figure 5 shows the average Q-value of 
the test set for 3 different moving commands by using the 
trained weights of every 300 steps of the iteration.

It seems that all of the 3 target values converged toward 
a state with a certain value. The convergences of Q-value 
proved the stability of the control network system. Along 
with the shrinking of the learning rate after 10,000 steps 

of iteration, the fluctuation of the value was also reduced, 
especially for the straight corridor environment. The 
increment of the Q-value in the training procedure indi-
cated that the control network was much more reliable 
with longer training time.

With the reward mentioned above, a direct feedback 
was the final scores the robot can achieve, with the 
trained strategy to choose the command related to the 
highest Q-value. The higher scores also meant that the 
Turtlebot would keep moving in the environment for a 
longer time and avoid more obstacles. But there was no 
apparent relation between the scores and the moving dis-
tance because the Turtlebot might move along a tortuous 
path. The width of the road in the simulated world was 
narrow enough that the robot cannot keep turning along 
the same direction rewarding positive infinite scores.

The trained model in every 1000 steps of iteration 
was tested 5 times in the related environment, and the 
result is shown in Fig.  6. It shows that the test scores 
of both environments increased at the first 2000 itera-
tions. Scores tested in straight corridor world keep con-
sistent near −20, which means that the robot moved 30 

Fig. 4 Converging curves of batch loss in iteration procedure. a 
Straight corridor training loss, b circular corridor training loss

Table 1 Training parameters and their values

Parameter Value

Batch size 32

Replay memory size 5000

Discount factor 0.85

Learning rate 0.000001

Gradient momentum 0.9

Max iteration 15,000

Step size 10,000

Gamma 0.1

Table 2 Setting of reward

State Reward value

Collision or stop −50

Keep moving 1

Fig. 3 Simulation environments. a Straight corridor, b circular cor-
ridor
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steps, with terminated reward −50. It was enough to 
arrive at the end of the straight corridor. The other one 
in the circular corridor environment was increased dis-
continuously. The highest test value in circular corridor 

environment was 80, which means that the robot moved 
130 steps, with terminated reward −50. The Turtlebot 
should have finished a lap in that situation. We can imag-
ine that the robot should keep moving forever along the 
circular corridor environment with infinite scores as a 
perfect model. But in the test, the robot will finally collide 
with obstacles every time. It is possible that the model is 
still not robust enough.

A more complicated simulated environment was also 
constructed as shown in Fig.  7. More obstacles were 
located to this simulated environment. However, no mat-
ter how long the control network was trained in this new 
environment, the exploration could not be accomplished. 
Even several more layers were added to the control net-
work to improve the nonlinearity for complicated mod-
els, it sill could not converge. It is possible that the fixed 
pre-trained perception network limits the extension of 
the whole model. As mentioned before, the overfitting of 
the supervised learning model might not represent the 
new environment in Fig. 7 good enough.

Conclusions
This paper presented a new approach to realize self-
motivated exploration in an unknown environment by a 
CNN-based reinforcement learning network. The pro-
posed modular network architecture provided a con-
venience way to transfer and update in the future. By 
separating the deep Q-network to a perception mod-
ule and a control module, the exploration task was 

Fig. 5 Q-value of the evaluation set calculated by the model at differ-
ent iteration stages. a Q-value test for straight corridor, b Q-value test 
for circular corridor

Fig. 6 Average score of 5 times evaluation by using the trained 
model of every 1000 iteration steps

Fig. 7 The more complicated environment for further experiment. 
But the proposed CNN-based reinforcement learning model is not 
converged to this new environment
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accomplished effectively. The test results in several simu-
lated environments showed that the Turtlebot achieved 
obstacle avoidance ability, and it could travel freely in the 
simulated environment with the strategy learned by itself.

However, the failure in the more complicated environ-
ment also reflected the limitation of this paper. And sev-
eral accessible aspects should be considered in the future 
to improve it. The whole DQN framework in real-time 
exploration should be implemented to train end-to-end. 
That means there should be no separated perception net-
work for the feature representation. In the reinforcement 
learning procedure, the weights of the perception module 
should be updated at the same time. The perception abil-
ity of the system would be developed and adapted to the 
new environment naturally. Except for the depth infor-
mation, the raw RGB image should also be considered 
as the input. With GPU accelerating, this should be also 
feasible.

The reward function should be redesigned as well 
because now every non-collision state was rewarded with 
the same score, which limits the interactions between the 
state and the robot in very few conditions. Finally, this 
model should be transformed to the application in real-
world scenario.
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