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Abstract— Obstacle avoidance is the core problem for mobile
robots. Its objective is to allow mobile robots to explore an
unknown environment without colliding into other objects. It
is the basis for various tasks, e.g. surveillance and rescue, etc.
Previous approaches mainly focused on geometric models (such
as constructing local cost-maps) which could be regarded as
low-level intelligence without any cognitive process. Recently,
deep learning has made great breakthroughs in computer
vision, especially for recognition and cognitive tasks. It takes
advantage of the hierarchical models inspired by human brain
structures. However, it is a fact that deep learning, up till now,
has seldom been used for controlling and decision making.

Inspired by the advantages of deep learning, we take indoor
obstacle avoidance as example to show the effectiveness of a
hierarchical structure that fuses a convolutional neural network
(CNN) with a decision process. It is a highly compact network
structure that takes raw depth images as input, and generates
control commands as network output, by which a model-less
obstacle avoidance behavior is achieved. We test our approach
in real-world indoor environments. The new findings and results
are reported at the end of the paper.

I. INTRODUCTION

A. Motivation and bio-inspired perception

Since the last decade, deep-network structures have been
adopted ubiquitously not only in robotics [1], [2], [3], [4], but
also natural language processing [5], [6], [7], [8], computer
vision [9] and so on. When distinct input and output state
spaces can be defined, the related approaches using complex
hierarchical structures are generally known as deep-learning.
Deep-learning is a typical bio-inspired technology. It origins
from the artificial neural network (ANN) paradigm [10],
which was invented in 1940s by McCulloch and Pitts. ANN
tries to simulate the nervous system, where the information
is preserved and transmitted through a network structure.
From the perspective of roboticists, deep-learning should
ultimately mimic a human brain and solve the perception
and decision-making problems, which has not been fully
developed yet. However, deep-learning has successfully, at
least in part, solved several preliminary perception issues for
robots, just like what a human brain can do. [11], [9] solved
the visual perception as object recognition. [12] solved the
acoustic perception. Regarding the decision-making, a recent
work by Google DeepMind has shown that the decision
process could be learned using a deep reinforcement learning
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model on the Q-functions [13], [14]. Note that all these
state-of-the-art methods tried to solve only one aspect of
perception, or with strong assumptions on the distinctiveness
of the input features (e.g. pixels from a game-play). However,
a practical robotic application is usually conducted with
uncertainties in observations. This requirement makes it hard
to design an effective and unified deep-network that is able
to realize a complete - though maybe seemingly simple -
robotic task. Despite these considerations, we present in this
paper a unified deep-network that is able to perform efficient
and model-less robotic exploration in real-time.

B. The need of deep-learning in robotics

Compared with other research fields, robotics research
has particular requirements, such as we need to take into
account the uncertainty in perception and the demand of real-
time operation. Robotics research is generally task-driven,
instead of precision-driven. A prestigious computer vision
recognition algorithm may result in almost-perfect precision.
However, the tiniest undetectable flaw may result in failure of
a complete robotic mission. Therefore, the balance among the
real-time capability, precision and confidence of judgment is
specifically required in robotics. Although there are several
libraries for deep-learning in computer vision and speech
recognition, we are still in need an ultra-fast and reliable
library for robotic applications. We have recently presented
a novel deep-learning library - libcnn 1, which is optimized
for robotics in terms of lightweight and flexibility. It is used
to support the implementation of all the related modules in
this paper.

C. Contributions

The core contribution of this work is that we present a
deep-network solution towards model-less obstacle avoid-
ance for a mobile robot. It results in high similarity between
the robotic and human decisions under the same situations,
which partially leads to effective and efficient robotic ex-
ploration. This is the first work to en-couple both robotic
perception and control in a real environment with a single
complex network.

D. Organization

The remainder of the paper is organized as follows:
Section II will go through the recent related works in deep-
learning as well as decision-making approaches, followed
by a brief introduction to the proposed deep-network model
in Section III. After that, we will introduce the validation
experiments of the proposed model in Section IV. We discuss

1http://github.com/libcnn



the pros-and-cons and potential use-cases of the proposed
model in Section V. At the end, we conclusion the paper
and provide additional reference to related materials.

II. RELATED WORK

The deep-network usually functions as a standalone com-
ponent to the system nowadays. For example, D. Maturana
et. al proposed an autonomous UAV landing system, where
deep-learning is only used to classify the terrain [2]. Addi-
tionally, deep-learning has also been used to model scene
labels for each pixel, as described in [15], [16], leading to
semantic mapping results.

A. Deep learning for computer vision

In order to address the previously mentioned problems
and challenges, a variety of deep neural networks were
reported in the literature. Most of these solutions took
advantage of the convolutional neural network (CNN) for
feature extraction. In our previous work [17], motivated by
the need of real-time computing for robotic tasks, we propose
a PCA-based CNN model to remove data redundancy in
a hidden layers, which ensured the fast execution of a
deep neural network. Besides these models, a number of
regularization algorithms have been proposed. In 2014, a
fully convolutional neural network was proposed by J. Long
et. al [16] that highly reduces the computation redundancy
and could be adapted to inputs of an arbitrary size. In this
work, the concept of deep-network is further extended from
perception to decision-making.

Although these proposed approaches have been validated
on typical data-sets, it is still questionable how well these
methods would perform considering practical conditions.
Besides, the task of recognition could only be considered
as an intermediate result considering robotic applications,
and further reasoning and decision making is required.
Meanwhile, one-stroke training strategy, as widely used by
computer vision researchers, may not be suitable considering
robotic applications. It is more suitable to use reinforcement
learning algorithms to allow the system improve performance
and increase confidence after each decision made.

B. Deep learning for decision making

Recently, Q-learning models have been adapted to deep
neural networks [13]. V. Mnih et al. [14] successfully utilized
CNN with Q-learning for human-level control. The proposed
approach has been validated on several famous games. Re-
sults show that the proposed system performs well when
dealing with problems with simple states. While when it
comes to problems that requires much reasoning, the per-
formance of the system gets poorer. Besides, since the input
is the screen of a game, probability and uncertainty were not
considered in that model. Tani et al. proposed a model-based
learning algorithm for planning, which was using a 2D laser
range finder and was validated with simulation.

Although the above mentioned models put deep neu-
ral networks into applications of decision making, and Q-
learning strategy is introduced in the learning process, it

was still not convincing how well deep-learning could help
real world applications. The problem of game playing oc-
curs in a simulated environment. When it comes to real
world applications, a lot more factors should be taken into
consideration, like the definition and description of states,
the introduction of noise from real data, etc. In this work,
we directly take the raw sensor measurements as input the
the network, and the robot control commands are directly
generated from the hierarchical network without modeling
the local environment.

III. A HIERARCHICAL NETWORK FOR OBSTACLE
AVOIDANCE

In this section, we are going to give a brief introduction
to the proposed model, which is used to generate control
command for exploration of an indoor environment. It com-
prises a CNN front-end network for perception and a fully-
connected network for decision making. The CNN generate
a set of high-dimensional feature maps, which are taken as
input to the fully-connected layers. All in all, these two
networks seamlessly join together. Such a complex network
takes raw sensor data as input and robot control commands
as output directly. The overall structure is shown as figure 1.

A. CNN for perception

Convolutional Neural Network (CNN) is one type of
hierarchical neural networks for feature extraction. By back-
propagating the gradients of errors, the framework allows to
learn a multi-stage feature hierarchy. Each stage of the fea-
ture hierarchy is composed of three operations: convolution,
non-linear activation and pooling.

1) Convolution: The convolution operation does the same
as image filtering. It takes the weighted sum of pixel values
in a receptive field. It has been proved that a larger receptive
field would contribute to the classification error. The mathe-
matical expression of convolution is denoted as follows:

yijk = (Wi ∗ x)jk + bi (1)

where, yijk denotes the pixel value at coordinate (j, k) of
the i-th output feature map. Wi denotes the i-th convolution
kernel, x is the input and bi is the i-th element of the bias
vector, which corresponds to the i-th convolution kernel.

2) Non-linear activation: After convolution, an element-
wise non-linear function is applied to the output feature
maps. This is inspired by the biological nerve system to
imitate the process of stimuli transmitted by neurons. the
sigmoid function s(x) = 1

1+e−x and the hyperbolic tangent
function tanh(x) = ex−e−x

ex+e−x was firstly used for activation.
Later a piece-wise linear function, namely rectifier, is widely
used, which is defined as follows,

f(x) = max(0, x) (2)

A neuron employing the rectifier is also called a rectified
linear unit (ReLU). Due to its piece-wise linear property,
the rectifier executes faster than the previous two non-linear
functions for activation.
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Fig. 1. The proposed model which combines CNN with fully-connected neural network for robot control. Note that conceptually, the CNN section mimics
the function of visual cortex and the fully connected layers mimic the premotor cortex.

3) Pooling: The pooling operation takes the maximum or
average value (or a random element for stochastic pooling)
in an image patch. Pooling aims to improve the robustness
of a network and reduces the effect of noise observations.

4) Stride: The stride parameter exists in the convolution
layer as well as pooling layer. It means the step over pixels of
convolution by patch-by-patch scanning. When stride s > 1,
the output feature maps is down-sampled by a factor of s.
By introducing the stride parameter, the parameter size of
the whole network is reduced.

B. Supervised Confidence-based Decision Making

Per the proposed structure shown in figure 1, we take depth
images as the only input of the network. The depth maps
provide straightforward information of traversability. Unlike
traditional computer vision applications, where each label of
the output represents either an object or scene categories,
the output of our model are control commands. We consider
the control commands are regression results from a fully-
connected network. To make a decision and generate control
commands, we propose the following approach:

1) Control command discretization
Generally, the output commands can be generated by

a linear classifier. For this multi-label case, a soft-max
classier is used in our model. To achieve the control of
the robot, the output control commands are sampled and
discretized. Considering the output state space, both the
linear and rotational speeds are analog. The greater number
of discretization levels leads to the higher precision in
control, however with greater computational complexity and
more difficulties in network convergence, vice versa. We
empirically choose five discretization steps for the control
command, which are “turning-full-right (0)”, “turning-half-
right (1)”, “go-straightforward (2)”, “turning-half-left (3)”
and “turning-full-left (4)”. In other words, a set of pre-
set rotational velocities are defined as a discretized angular
velocity space, i.e. ~Ω = (ω∗

0 , ω
∗
1 , ω

∗
2(= 0), ω∗

3 , ω
∗
4)T , where

ωi are parameters for discretized control.
2) Confidence-based regression
The fully-connected layers work as a predictor of co-

efficients. These coefficients server the linear combination
of feature maps generated by the CNN. On this regards,

we adopt a confidence-based decision making strategy. The
output of the soft-max classifier are taken as the probability
of each label (discretized directions). Note that it solves the
shortcomings of a winner-take-all strategy. For example, if
the highest possibility is 0.3 ()the agent is supposed to take
a right turn), while the second highest possibility is 0.29
(the agent to go straight forward). According to the first
strategy, the agent turns right. While the fact is that the agent
is not sure whether to turn right or go straight forward. This
could be solved by the linear combination of the decision
candidate. Let c1, c2, c3, c4, c5 denote the confidence of each
output label, and ωa denote the angular velocity of the of
the mobile robot. The output angular velocity is

ωa =< ~Ω∗, (c1 c2 c3 c4 c5)T > (3)

where < ·, · > is an operator of inner-product. Equation
(3) maintains a trade-off among different output decisions.
Note that it is seemingly likely that the initial decisions can
be wrongly averaged by coincidentally simultaneous left and
right decisions. However, these dilemma cases do not present
in real experiments, considering the feature maps are largely
different for these opposite cases.

IV. EXPERIMENTS AND RESULTS

A. Platform and environment

In order to validate the effectiveness of our proposed
model, we use a TurtleBot for experiments. To acquire visual
inputs, a Microsoft Kinect sensor is equipped, for which the
effective sensing range is 800 mm to 4000 mm. We use the
open source framework Robot Operating System(ROS)2 to
integrate the test system. All the codes are running on a low
performance laptop with an Intel Celeron processor without
GPU. Based on our recent results of PCA-based CNN, it
performs real-time execution of the deep neural network [17].
The system is shown in Fig. 3(a). The test environment we
used is an indoor environment with corridors. A typical scene
is shown Fig. 3(b).

2http://www.ros.org



(a) Hardware and platform (b) Sample test environment

Fig. 2. Platform and sample test environment

B. Data Gathering

In our experiment, we use a set of indoor depth data-sets
for training. The ground-truth output is instructed by a human
operator. To be more specific, during the training process, an
instructor operates the mobile robot to explore an unknown
indoor environment without colliding into obstacles. The
robot with the proposed complex network will learn these ex-
perience, and adapts these experience in new environments.
We record the synchronized depth maps by Kinect and the
control commands by the human operator. This dataset is
used to train the proposed model in Section III. Note that the
the control commands are sampled and discretized into five
categories corresponding to the discretized control labels.

C. Network Configuration

The original depth image size from Kinect is 640×480. In
our experiment, the input size is down-sampled to a quarter
of the original size, i.e. 160×120. This operation will largely
reduce the computational cost without introducing much
errors. The down-sampled depth map is put into a three-
stage “convolution + activation + pooling” cycles, followed
by one fully connected layer for feature extraction. The first
convolution layer uses 32 convolution kernels of size 5× 5,
followed by a ReLu layer and a 2 × 2 pooling layer with
stride 2. The second stage of convolution + activation +
pooling is the same as the first stage. For the third stage,
64 convolutional kernels of size 5 × 5 are used, with no
change of the ReLu layer and pooling layer. This results in
64 feature maps of size 20 × 15. The fully-connected layer
consists of 5 nodes. The last layer represents the score of
each output state. The control commands consist of 5 states:
one for going straightforward, two for turning left and two
for turning right as defined previously. The final decision
is calculated by applying regression using the outcome of
the last layer as co-efficiencies over the 5 possible control
commands.

D. Sample Results and Evaluation

In all trails the robot does not collide with obstacles. How-
ever, we consider this does not reflect the true performance

of the system sufficiently. To evaluate the performance of
the system, we study the similarity of the robot decision and
human decision under the same situation.

Firstly, we show the results using a soft-max classifier for
decision making. We sampled 1104 depth images from the
complete indoor data-set where the five categories of control
commands are almost equally distributed after selection. This
is for the sake of fair comparison over the various cases.
Thereby, we use 750 images for training and 354 images
for testing. For detail of the data-set, please refer to the last
section.
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Fig. 3. Confusion matrix on the test set. The green-to-red color-map
indicates the accuracy of inference. Note that the outcome is equivalent
to a five-labeled classification problem. The result demonstrates outstanding
performance of the proposed structure as well as the libcnn implementation.

The result is shown in Fig. 3. We could see that the
overall accuracy of the test set is 80.2%. The class accuracy
is 79.76%, i.e. the mean accuracy of each class. Further-
more, regarding mis-classification, there is quite low chance
for our system to generate totally opposite decision, e.g.
to mis-classify “left” as “right”. A large portion of mis-
classifications could be mis-classifying a “turn-half-left” to a
“turn-full-left” or “go-straightforward”. This further proves
the effectiveness of the confidence model, in terms of the
error distributions. This result indicates the effectiveness of
the system in generating similar controls as human under the
same situateions.

Fig. 4 depicts the typical comparison between the deci-
sions made by human and robot over a time series. In this
figure, we plot the angular velocity over time, where positive
values means turning left and negative means turning right.
We set linear velocity as constant. Two series are shown
regarding different complexities of the test environment. We
sampled 500 points of both the human decision and the



robot decision. We calculated the mean absolute difference
between the two cases. In the first case, the mean absolute
difference is 0.1114 rad/s. In the second case, the value is
0.1408 rad/s. These statistics indicate that the robot is able
to highly imitate the decision from human. Furthermore, the
shift in time of making a turning decision is largely due to
the sensitive range of the Kinect sensor, making the robot
only able to make a turning decision closely in front of an
obstacle, while human beings are able to foresee this.

0 2 4 6 8 10 12 14 16 18 20
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time/s

A
n

g
u

la
r 

V
el

o
ci

ty
/(

ra
d

/s
)

Comparison between Human Decision and Robot Decision

 

 
Human Decision

Robot Decision

0 2 4 6 8 10 12 14 16 18 20
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Time/s

A
n

g
u

la
r 

V
el

o
ci

ty
/(

ra
d

/s
)

 

 
Human Decision

Robot Decision

Fig. 4. Comparison of human decision and robot decision

Regarding the running time, the average running time
from receiving the input to generate the output command is
247ms, with a variance of 12ms. Note that we get this real-
time performance without using any GPU to attempt faster
evaluation of the complex network.

V. DISCUSSION AND ANALYSIS

In our model, a complex network is used to enable a
mobile robot to learn a feature extraction strategy. Although
the model is trained in a supervised way, the use of CNN
avoids the calculation of hand-crafted features, which allows
the agent better adapt to different kinds of environments.
Besides, the hierarchical structure of the network maps the
input to a higher dimension and enables the successful
application of a linear classifier.

A. Visualization of feature maps
In order to demonstrate how the trained network functions

as reasonable visual perception functions, we visualize the
feature maps generated from the last layer of the CNN in
Fig. 1. The second-last layer represents the feature maps,
which are further categorized by the fully connected layer.
The outcome leads to the selection of control commands.
However, it is not easy to visualize the feature maps which
are denoted by

G := {gi|gi = NN(Ii)}

where NN is the function of the deep-network and Ii is the
input depth image with index i. gi is the corresponding fea-
ture map of the input i. Note that each gi is with dimension of

gi ∈ R19200. To solve the visualization problem, we adopt
a latent variable Gaussian Process model (GPLVM), more
specifically, with Spike and Slab Gaussian Process Latent
Variable Models (SSGPLVM), which was recently proposed
by Dai et al. [18]. We project gi into a lower dimensional
space 3. After that, a pair of distinguished dimensions can
be visualized as R2. The final visualization result is shown
as Fig. 5. The legend indicates the label of the generated
control commands, i.e. 0 refers to that the robot will make
a full-right turn; 4 indicates a full-left turn and 2 refers to a
straightforward motion, following the definitions in Section
III.B. The gray level of the gray-scale background indicates
the variance of the training data. Note that the plot is a
sampled result from a large number of training data. We
could see that separating from the center, there are much
more green and yellow dots on the right; whereas more red
and orange dots on the left. This distribution indicates that
the left or right control output are slackly distinguished. The
blue dots are all over the space, which indicates that the
straightforward motion is universal under different possible
image inputs. This behavior was reasonable during the exper-
iments. These clustered points show that the visual feature
maps are roughly linear separable in high-dimension space.
It intuitively proves that the separable visual features is the
basis for generating the corresponding control commands.

Fig. 5. Visualization of 19200-dimensional feature maps of the training
data on a two-dimensional plane.

B. Feasibility to mimic humans for further robotic applica-
tions

The exploration behavior is in an active and forward-
computing manner, which means that the robot is self-
conscious. Unlike geometric models that deals with distance
information, our model is trained by taking human instruc-
tions as references, and it highly imitates a brain in the
similar way to make a decision. In 20 trials, our approach
performs perfectly for obstacle avoidance. Traditional ob-
stacle avoidance algorithms requires a local map or a cost

3In this work, we empirically chose the projected latent space as R6.



map to be built before making a decision, which adds to
additional computational cost. While in our model, only the
direct sensor input is needed and obstacle avoidance task is
achieved automatically. This is much like the stress-reaction
of a biological neural system. This further indicates that our
approach partially simulates a higher-level intelligence.

By further integrated with localization and navigation
systems, our model has the potential to become a complete
indoor navigation system. A series of tasks, such as visual
localization[19], visual homing [20], [21], exploration and
path-following[22], could be achieved. We aim to fulfill these
tasks by hierarchical networks in the near future.

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed an obstacle avoidance approach
in indoor environments based on a complex deep-network
structure, and accomplished real-world experiments. Exper-
iments show that our system could successfully manage
obstacle avoidance. Comparisons between robot decisions
and human decisions showed high similarity. Nevertheless,
there are still some limitations, like the offline training
strategy is not mostly suitable for robotic applications and
a discrete classification may not be precise enough for a
continuous state space of the decisions. For the next steps,
we will further en-couple on-line learning algorithms with
libcnn and further extend the target space from discrete space
to continuous space.

MATERIALS

Along with this submission, we provide the following
additional materials for further bench-marking from the
community:

• A novel CNN library named libcnn was recently
proposed. It emphasizes real-time capability and
robotic related applications. It can be obtained at
https://github.com/libcnn/libcnn

• The data-set with RGB-D input and human op-
erations for exploration is available at https://ram-
lab.com/dataset/rgbd-human-explore.tar.gz (560 MB).
The data-set contains 1104 synchronised RGB-D and
joystick information. Further detail is as follows:

Topic Name msg Type Description

/camera/depth/image raw sensor msgs/Image Depth images
/camara/rgb/image color sensor msgs/Image Colour images

/joy sensor msgs/Joy Joystick commands
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