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Abstract—Indoor localization is a fundamental capability for
service robots and indoor applications on mobile devices. To
realize that, the cost and performance are of great concern.
In this paper, we introduce a lightweight signal encoding and
decomposition method for a low-cost and low-power Visible Light
Communication (VLC)-based indoor localization system. Firstly,
a Gold-sequence-based tiny-length code selection method is intro-
duced for light encoding. Then a correlation-based asynchronous
blind light-signal decomposition method is developed for the
decomposition of the lights mixed with modulated light sources. It
is able to decompose the mixed light-signal package in real-time.
The average decomposition time-cost for each frame is 20 ms. By
using the decomposition results, the localization system achieves
accuracy at 0.56 m. These features outperform other existing
low-cost indoor localization approaches, such as WiFiSLAM.

I. INTRODUCTION

A. Motivation

Indoor localization is fundamental for various robotic and

intelligent device-based applications. Although research on

this topic has been conducted for a long time, there are still

many unsolved practical problems, especially the balance of

cost reduction and performance improvement. Most of existing

approaches reach a high accuracy with costly exteroceptive

sensors, such as cameras [1], [2], [3], [4] and range-finders

[5]. Even though WiFiSLAM [6], [7] can provide a low-cost

solution, its application scope is very limited due to relatively

low precision and sensitivity to noise.

WiFiSLAM utilizes radio-frequency beacons in the envi-

ronments. Inspired by this and Visible Light Communication

(VLC) [8], [9], a VLC-based indoor localization framework

was preliminarily proposed in our previous work [10]. It aims

at low-cost localization with higher precision than WiFiSLAM.

To achieve the aim, more in-depth research is necessary.

B. VLC-based Indoor Localization System

The entire system includes hardware and software. The

hardware system consists of two major parts: modulated LED

light sources and a photonic diode. The modulated LED

light sources are used to construct a space illuminated with

beacons. All the LED lights are modulated with selected

beacon codes (following the algorithm defined in Section

II) and work at the same frequency (960 Hz) in rectangle

waveforms. The beacons are not observable by human eyes

due to the high frequency; however, they are observable by a

photonic sensor. The photonic sensor can then localize based
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on the “fingerprints” of locations. For further references to our

hardware system, please check our previous report [10].

Once the light field is determined, the localization

is achieved by a series of processes, including three

major parts: light-signal decomposition, Gaussian-Process-

Regression (GPR)-based map generation, and Bayesian filter-

based localization as shown in Fig. 1. The signal decompo-

sition component decomposes the received light-signal and

computes the received intensity for each source. These inten-

sities and the corresponding locations are fed into the GPR-

based map generation component, such that mean maps and

variance maps are constructed as shown in Fig. 1. Using these

outputs, localization is achieved through the Bayesian filter-

based localization component. We mainly deal with the light-

signal decomposition in this paper. For the readers that are

interested in the map generation and localization, please refer

to our future reports.
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Fig. 1. Localization software framework

C. Challenges and Contributions

The decomposition method introduced in our previous re-

port [10] needs synchronisation in the light sources side. How-

ever, in real applications, synchronisation of a large number

of modulated light sources at sub-microsecond precision is

very difficult or costly to achieve. So asynchronous light-signal

decomposition is necessary. Lights that are modulated with

different beacon codes will be additively mixed together with

random phases as input to the photonic sensor, i.e., a mixture

of blind signals which is difficult to process. Its decomposition

is sensitive to noise. Although the accuracy and stability of the

light-signal decomposition might be improved by lengthening

the beacon codes, it will largely increase the calculation cost of

the decomposition and jeopardize the real-time performance.

Therefore, an effective short codes selection method and

corresponding efficient decomposition algorithm are required.
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We address the following two major contributions:

1) An algorithm for tiny-length code selection: is developed

to get suitable 31-bit Gold-sequences. It is named tiny-length,

because the shortest code for existing CDMA standard is 127

bits, which is four times longer. Even with yet low signal-to-

noise ratio, the 127-bit codes are already too timely costly for

the VLC system with a 960 Hz base-frequency (due to hard-

ware constraints). In this work, the beacon codes selected by

the proposed algorithm are with not only optimal correlation

properties but also balanced energy. They are suitable for the

correlation-based asynchronous blind signal decomposition.

The generated codes can also be used as references for other

similar problems, such as RF-based localization.

2) A low-cost light-signal decomposition algorithm: is

developed to deal with the asynchronous blind light-signal

decomposition. The decomposition is realized by correlation

analysis. It can accurately and stably extract the intensity of

each received beacon component. The average decomposition

time-cost per frame is 20 ms.

D. Organization

For the remainder of the paper, in Section II, the code

selection algorithm is introduced. The signal decomposition

algorithm is then discussed in Section III. In Section IV and

Section V, the validation experiments and localization tests are

introduced, respectively. At the end, we conclude our work and

make an outlook for the work that could be done in the future.

II. BEACON CODE SELECTION

A. Pseudonoise (PN) Sequences

The proposed method is partially based on an existing PN-

sequence framework. For the asynchronous blind signal de-

composition, the most widely used PN-sequences are: maximal

length sequence (m-sequence), Gold-sequence and Kasami-

sequence. They all claimed to have very low cross-correlation

and good auto-correlation, especially for long-length codes.

Their unique characteristics including correlation functions are

discussed in [11], [12], [13], [14], [15], [16].

The cross-correlation response of m-sequence can be un-

expectedly high in some special cases [12]. The unexpected

high response is bad for the light-signal decomposition. But

for Gold-sequence and Kasami-sequence, their correlation

responses can only be several specific values in constrained

ranges [13], [14]. For the VLC-based indoor localization

system, we need a large number of tiny-length beacon codes

with low cross-correlation responses. Therefore, both Gold-

sequence and Kasami-sequence are potential optimal choices,

except m-sequence.

B. Cross-correlation Performance of Different PN-sequences

According to the correlation functions of Gold-sequence and

Kasami-sequence discussed in [13] and [14], possible corre-

lation responses are discussed here. The correlation functions

in [13] and [14] are for PN-sequences in the form of “-1”

and “1” (“(-1)-1” binary form). But in the VLC system, the

beacon codes are transmitted through lights in the form of on

and off, where the form of “0” and “1” (“0-1” binary form)

can better indicate the energy cases. In this paper, the encoding

and decomposition of light-signals are in “0-1” binary form.

For our specific case (all beacon codes are balanced; guar-

anteed by the algorithm in Section II-D), the relation between

the above two forms is Ra′,b′ =
1
4Ra,b +

1
2 + L

4 , where Ra,b

and Ra′,b′ are the respective cross-correlation responses of

two codes in “(-1)-1” binary form (Ca, Cb) and “0-1” binary

form (Ca′ , Cb′ ). L is the code length. Detail inference will be

introduced in our future reports.

The computed cross-correlation peak and least values as

well as corresponding amount of available sequences are listed

in Table I for each kind of PN-sequence (L between 15 and

4095). The cross-correlation values are normalized values. The

normalized auto-correlation values are all 1. “-” denotes that

there is no available data.

In Table I, there is no available data for Kasami-sequences

with the lengths of 31, 127, 511 and 2047, since there is no

available Kasami-sequence with these lengths [14]. Although

the peak and least values of each small-set Kasami-sequence

(L=15, 255, 4095) are respectively closer to zero than those

of corresponding Gold-sequence, its amount of available se-

quences is much less than that of Gold-sequence. For each

large-set Kasami-sequence (L=63, 1023), although the amount

is much larger than that of Gold-sequence, their peak and least

values are respectively same.
TABLE I

CROSS-CORRELATION PERFORMANCE INDICATORS

Peak Value Least Value Amount N
∗

L/bits Gold Kasami Gold Kasami Gold Kasami Gold Kasami

15 0.7500 0.6250 0.2500 0.3750 17 4 1 2
31 0.6250 - 0.3750 - 33 - 2 -
63 0.6250 0.6250 0.3750 0.3750 65 520 2 2
127 0.5625 - 0.4375 - 129 - 4 -
255 0.5625 0.5312 0.4375 0.4687 257 16 4 8
511 0.5313 - 0.4687 - 513 - 8 -

1023 0.5313 0.5313 0.4688 0.4688 1025 32800 8 8
2047 0.5156 - 0.4844 - 2049 - 16 -
4095 0.5156 0.5078 0.4844 0.4922 4097 64 16 32

C. The Optimal Type and Length of Beacon Codes

With suitable beacon codes, the correlation response be-

tween the mixed signal and the included beacon code with

the highest intensity (with a right phase) is usually greater

than that for a certain irrelevant beacon or irrelevant phase.

This is the basis of our light-signal decomposition algorithm.

However, the response for a certain irrelevant beacon might be

incidentally the peaked correlation response (Incidental Case).

To guarantee high enough reliability of the decomposition, the

occurrence rate of this case should be reduced by maximizing

the difference between auto-correlation and cross-correlation,

or through limiting the amount of mixed beacon codes.

The maximum allowed amount (N∗) of mixed beacon codes

can be theoretically represented as

N∗ =
1−Normalize(R∗

m,n)

Normalize( ¯Rm,n)−Normalize(R∗

m,n)
(1)

where ¯Rm,n and R∗

m,n are the peak and least values (listed

in Table I) of Rm,n, respectively. Rm,n is the correlation

response of any PN-sequences m and n (with same type and

length). Normalize does the normalization function. Detail in-

ference will be introduced in our future reports. The computed
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N∗ for each kind of PN-sequence is listed in Table I. Since N∗

must be an integer, all the results are rounded to be integers

by taking a floor operation.

Preliminary experiments show that, at most three or four

beacon codes can be reliably detected in any position in

the experiment environment as shown in Fig. 3. While in

most cases, one or two beacon codes are reliably received.

Even when three or four beacon codes are reliably detected,

the occurrence probability of the Incidental Case is nearly

zero. Since its occurrence conditions can hardly be satisfied

simultaneously, whose detail explanation will be introduced

in our future reports. The above conclusions are common

in most indoor lighting environments, since the experiment

environment is typical.

Given Table I, only those sequences with lengths over 127

can totally satisfy all cases where at most four beacon codes

are detected; while those with the lengths of 31 and 63 are able

to satisfy most (almost all) cases. In addition, sequences with

longer length will result in much more calculation cost, since

the complexity of the decomposition algorithm is O(Nd ·L
2)

where Nd is the amount of detected beacon codes. Therefore,

31-bit Gold-sequence is the optimal choice.

D. Code Selection Algorithm

The code selection algorithm is shown in Algorithm 1.

Four inputs are L, N , R and T . Regarding R, the maximum

repetition times is the maximum consequently repeating times

of the same bit (“0” or “1”) in each code. The only output is B

which is the matrix of all satisfied beacon codes. As analysed

in Section II-C, T is Gold-sequence here; L = 31.

Algorithm 1: Beacon Code Selection

input : L: the required length of beacon codes ;
N : the required amount of beacon codes;
R: the allowance of maximum repetition times;
T : the type of required PN-sequences.

output: B: beacon codes matrix.

n = 0;1

B = [ ];2

while n < N do3

S0← GenerateNewSequence(L, T);4

if JudgeBalance(S0) = True then5

if CountRepetition(S0) < R then6

Expand B ← S0;7

n = n+ 1;8

end9

end10

end11

First, potential beacon codes will be generated by

GenerateNewSequence according to the construction of

specific PN-sequence (T ). Then the potential codes will be first

filtered according to their balance properties, since not all the

potential beacon codes are balanced by default. At the end,

the maximum repetition times will be considered, since the

frequency characteristics need to be largely differentiated from

the frequency of ordinary light sources (i.e., unmodulated LED

tubes or fluorescent tubes) to avoid their influences. Besides,

if the same bit repeats too many times, the light flashing

frequency will be decreased, which can result in detectable

illumination flicking to human eyes.

The frequency of ordinary light sources is normally 50

Hz (the case for the experiment environment) or 200 Hz. To

guarantee a reliably safe distance from the ordinary frequency

and also enough number of available beacon codes, the mini-

mum instantaneous frequency (fi) is set to be about twice of

50 Hz, i.e., around 100 Hz. Therefore, considering the LED

modulation frequency is 960 Hz, R is set to 6 (fi =
960
2∗5 = 96).

The selected set of 31-bit Gold-sequences are listed in

Table II. Their normalized correlation peak distribution map

is shown in Fig. 2. We could observe optimal auto-correlation

and cross-correlation characteristics of the selected codes.

Please note that there is seemingly a limitation in the amount

of selected beacon codes, i.e., 12 groups. However, in practice,

it is sufficient for larger space to encode lights within a

neighbourhood, because the photonic diode generally has a

limited angular field-of-view, such that only a limited number

of light sources are directly observable.

TABLE II
THE SELECTED SET OF BEACON CODES

No. Result Beacon Code

1 1 1 0 1 0 1 1 0 1 1 0 1 1 0 0 1 1 1 0 0 0 1 0 0 1 1 0 0 0 0 1
2 0 1 0 1 0 1 1 0 1 0 0 0 0 1 1 0 0 1 0 0 1 1 1 1 1 0 1 1 1 0 0
3 0 1 0 1 0 0 0 0 1 0 0 1 0 1 1 0 0 1 1 1 1 1 0 0 0 1 1 0 1 1 1
4 0 1 1 0 0 0 1 0 1 1 1 0 1 0 1 1 1 0 1 1 1 0 0 1 0 0 0 0 0 1 1
5 0 1 0 0 1 0 0 1 1 0 1 0 1 0 0 0 1 0 0 1 1 1 1 0 1 1 0 1 1 0 1
6 0 0 0 1 1 1 1 1 0 0 1 0 1 1 1 0 1 1 0 1 0 0 0 1 0 1 1 0 0 0 1
7 0 1 1 1 0 1 1 1 0 1 0 0 1 0 1 0 0 0 1 0 1 0 1 0 1 1 1 0 1 0 0
8 1 1 0 0 0 0 1 1 0 1 1 1 1 0 0 0 0 1 0 1 0 1 1 1 0 0 1 0 1 1 0
9 1 0 0 1 1 0 0 1 0 1 1 0 0 0 0 1 0 1 1 0 1 0 0 1 1 1 0 0 1 1 1
10 1 1 1 0 1 0 0 0 0 0 1 1 1 0 1 1 0 1 1 1 0 0 0 0 1 1 1 1 0 0 0
11 1 0 1 0 1 0 1 1 0 0 0 1 1 1 0 0 1 0 1 0 1 1 0 0 1 0 1 0 0 1 1
12 0 1 1 0 1 1 1 0 0 1 1 1 0 1 0 0 1 1 0 0 1 0 0 0 0 1 0 1 1 1 0

III. MODULATED LIGHT-SIGNAL DECOMPOSITION

The light-signal decomposition is mainly based on the opti-

mal correlation characteristics of the selected beacon codes.

With these beacon codes, the correlation response of the

beacon code with the highest intensity will be the peak

among all the possible correlation responses between a certain

light-signal and potential beacon codes. The decomposition

is achieved through iteratively extracting the intensity of the

beacon code with the highest intensity in the input signal of

each iteration.

The decomposition algorithm is shown in Algorithm 2. Two

inputs are Se and C. Se is the light energy directly received

by the photonic diode; C is the set of beacon codes used for

light modulation. Two outputs are Intern and Nd. N and L

are respectively the amount and length of the beacon codes.

A. Signal Pre-processing

The received light energy signals will first be converted

to amplitude signals. Before that, EnergyCalibration

will calibrate the original energy signals to be non-negative

(compatible to their physical energy). Then an amplitude filter

will be used for filtering of noises produced by nature or

decomposition processes. It is realized based on the balance

property of the selected beacon codes. All the signals greater

than 2.2 times (empirically selected) of the mean amplitude

or smaller than zero are treated as noises.

B. Correlation Response and Peak Value

After the pre-processing, the correlation responses (Res)

are calculated between S
′

a and all possible beacon codes (Cf )

with different bit-offsets. Based on the correlation responses,
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the peak value Mr, the corresponding beacon code index Mc

and bit-offset Mp are computed by FindMaxResponse.

Algorithm 2: Light-Signal Decomposition

input : Se: the received light-signals ;
C: the set of beacon codes.

output: Inten: the intensities of used beacon codes;
Nd: the amount of detected beacon codes.

N,L←SizeCodeSet(C);1

Nd = 0;2

Res = zeros(N,L);3

Inten = zeros(N, 1);4

Cf = C;5

Se ← EnergyCalibration(Se);6

Sa ← EnergyToAmplitude(Se);7

for i← 1 to N do8

S
′

a = AmplitudeFilter(Sa);9

Res← CorrelationCalculate(Cf , S
′

a);10

Mr,Mc,Mp ← FindMaxResponse(Res);11

Meanr ←
(
∑L

n=1
Res(Mc)(n))−Mr

L−1
;12

Inten(Mc)←
2(Mr−Meanr)

Ratior(Mc)·(L+1)
;13

Inten(Mc), e = IntenCorr(Inten(Mc), S
′

a);14

if e
Inten(Mc)

> Thresholde then15

break;16

end17

Sc ← Inten(Mc)·CodeShift(Cf (Mc),Mp);18

Sa ← Sa − Sc;19

Cf (Mc)← zeros(1, L);20

Nd = Nd + 1;21

end22

C. Intensity Extraction of Each Beacon Code

With the peaked correlation response, the intensity of bea-

con code Cf (Mc) can be decomposed by:

Inten(Mc) =
2(Mr −Meanr)

Ratior(Mc) · (L+ 1)
(2)

where Meanr is the mean of all the other responses between

S
′

a and Cf (Mc) except Mr. Ratior(Mc) is the difference

between the peak and mean of others of the normalized auto-

correlation responses of Cf (Mc). It precisely holds only when

there is only one modulated light source (n = 1). Detail

inference will be introduced in our future reports.

For the case with multiple light sources, the closer the

intensities of other beacon codes are to the highest intensity,

the bigger the error of the intensity extracted by equation

2 is. Besides, numerous errors might also be introduced by

environment lights. Although the errors can be largely reduced

by the mean calculation, the precision cannot be guaranteed.

Regarding this, the extracted Inten(Mc) will be corrected

by minimizing the error between the decomposed signal and

corresponding original signal, through IntenCorr.

If e
Inten(Mc)

> Thresholde, the extracted Inten(Mc) is

treated as an unreliable result to be excluded. The decompo-

sition will not stop until no more beacon code can be reliably

decomposed. At the end, the intensities of inclusive beacon

codes (Inten) and the amount of exactly detected beacon

codes (Nd) are returned. Those beacon codes without exact

intensities are treated as unreceived or unobservable. Their

intensities will be set to zeros. The complexity of the light-

signal decomposition algorithm is O(Nd · L
2).

IV. VALIDATION AND ANALYSIS

A. Experiment Environment

The VLC-based indoor localization system is installed in

the experiment environment as shown in Fig. 3. There are 12

modulated LED sources (units, Unit 1-12) in the environment.

Only seven of them can be seen in Fig. 3, i.e., Unit 1, 2 , 3, 5,

6, 8 and 9. They are all modulated with the selected beacon

codes listed in Table II. The proposed code selection and light-

signal decomposition algorithms are implemented on a tablet

connected with a photonic diode.

B. Validation Experiments

For stability and accuracy concerns, the decomposition

results (intensities) under the same situation (e.g., same po-

sition and orientation, same light conditions, etc) should have

small variance δ2 and error e. Validation experiments were

performed at the fixed Postion A as shown in Fig. 3, including

intensity ground-truth measurements and mixed lights decom-

position experiments.

Intensity ground-truth can hardly be directly measured by

sensors, because it represents light amplitude, not light energy.

Thus, the intensity ground-truth from each single light source

in Position A was measured using the decomposition algorithm

described in Section III. To minimize the influences from

other light units, only the unit being measured was turned

on. Besides, during the measurements, the photonic diode was

always with the same orientation. The measurement duration

of each unit is 100 s, during which at least 110 groups of

data were gathered. The mean of the intensities is treated as

the intensity ground-truth (Istandard).

Given the intensity ground-truth measurements, only the

lights from the nearest three units (i.e., Unit 2, 3 and 6)

can be reliably detected in Position A. Thus, for the mixed
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TABLE III
DECOMPOSITION PERFORMANCE OF DIFFERENT ALGORITHMS IN DIFFERENT SITUATIONS

Unit
Istandard Ioptimal_decomp Inaive_decomp

Each Single Unit 2+3 Unit 2+6 Unit 3+6 All Three All Three

µ δ2 µ δ2 µe/% µ δ2 µe/% µ δ2 µe/% µ δ2 µe/% µ δ2 µe/%

2 3.44 0.31 3.85 0.70 11.9 2.97 0.36 13.8 - - - 0.82 0.89 76.2 - - -
3 11.22 1.22 11.28 1.37 0.5 - - - 9.93 1.35 11.5 9.42 1.67 16.1 16.46 8.55 46.7
6 18.79 2.05 - - - 17.83 1.41 5.1 17.72 2.10 5.7 16.37 2.03 12.9 29.75 3.89 58.4
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Fig. 5. The decomposition results of each single unit in Position A

lights decomposition experiments, there are three 2-mixture

situations (i.e., Unit 2+3, Unit 2+6 and Unit 3+6) and one

3-mixture situation (i.e., Unit 2+3+6). For each test, only the

testing units were powered on. In addition, a decomposition

comparison experiment was carried out between the proposed

decomposition method and a naive decomposition method,

using the same dataset. Compared with the proposed de-

composition algorithm, the naive decomposition algorithm do

not conduct energy calibration, amplitude filter and intensity

correction functions.

C. Results and Analysis

The experiments results are shown in Table III. The typical

original and decomposed waveforms in the intensity ground-

truth measurements are shown in Fig. 5. The two highest

peaks of each original signal in Fig. 5 were produced by an

external motion tracking system, which was used to measure

the position of the photonic diode. Fig. 5 shows that, the

decomposed signals match the original signals very well.

During the intensity ground-truth measurements, the decom-

posed signals can always match the original signals precisely,

which indicates that the proposed decomposition algorithm can

precisely extract the intensity of each beacon.

In Table III, µ and δ2 are the mean and variance of intensi-

ties, which are computed by fitting a normal distribution. µe

is the mean of the error rate of the decomposed intensities

(Idecomposed), which is calculated by equation 3.

µe =
|Idecomposed − Istandard|

Istandard
· 100% (3)

According to the results, for the 3-mixture situation (All

Three), both the µe and δ2 of Ioptimal_decomp are much

less than those of Inaive_decomp. The naive decomposition

algorithm can only decompose two beacon codes. While the

algorithm proposed in Section III can decompose all those

three beacon codes with the correct ranking of the intensities.

For the 2-mixture situations, their values of µe are all

smaller than that for All Three (Ioptimal_decomp). Especially

for the intensity of Unit 2, the stronger the other signals are,

the greater the µe of Unit 2 is. It is because the intensity of

Unit 2 is comparatively much lower than those of Unit 3 and 6.

This indicates that, except for too weak signals the proposed

decomposition algorithm can relatively precisely decompose

mixed light-signals in most cases. Although the µe can be

16.1%, it is still sufficient for the entire indoor localization

system which localizes based on posterior maximum likeli-

hood using a Bayesian filter.

All the variances of Ioptimal_decomp are almost the same

as those of Istandard, respectively. This indicates that the

stability of the proposed decomposition algorithm maintains

well in most cases. Even though the variances include not only

the uncertainty of the proposed decomposition algorithm, but

also the uncertainty of the light-signals, they still satisfy the

requirements of the proposed indoor localization system.

D. Larger Scale Validation

To validate the selected beacon codes and proposed de-

composition algorithm in a larger scale, the same validation

experiments were performed in a larger environment, i.e., the

entire range as shown in Fig. 3. During the experiments, all

the 12 LED units were powered on. The typical case of the

decomposed results is shown in Fig. 4, which indicates the

case in Position B as shown in Fig. 3. The corresponding

decomposition processes are shown in Fig. 6.

In Fig. 6, after energy calibration, the energy signal from

the photonic diode was converted into the amplitude signal.

According to the comparison of the original amplitude signal

and the signal reconstructed from the decomposed component-

signals in Fig. 6, the two signals match well, except for natural

noises. In Fig. 4, the distributions of the decomposed three

beacon codes (Unit 5, 8 and 11) are all concentrated. The

well-matched results and concentrated distributions indicate

the feasibility and stability of the proposed method in the entire

experiment environment.

V. LOCALIZATION TEST

With the selected beacon codes and the proposed de-

composition algorithm, localization tests were made in the
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(b) Decomposed component-signals
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Fig. 6. The light-signal decomposition processes in Position B. The photonic diode was straight up. All the 12 modulated LED units were powered on.

experiment environment as shown in Fig. 3. Firstly, training

datasets for the GPR-based map generation were gathered

in the experiment environment. In the training datasets, the

position data use the SLAM results from a test mobile robot.

Then the 2D-intensity-distribution-map-group (including the

mean and the variance) of each modulated LED unit was

generated through GPR, using the training datasets.

Based on these maps, the VLC-based indoor 2D-localization

tests were done under the following conditions:

• All the units in the experiment environment were powered

on and worked well.

• The tablet worked at the height around 1.2 m off the

ground which is the average height for a hand-held device

in-use. The orientation of the photonic diode was roughly

the straight up direction without strict requirements.

Both the height and orientation were arbitrarily changed

slightly by fitting to a normal use-case.

• The test covered all available areas in the environment.

Given more than 1000 groups of localization results, the

mean and standard deviation of localization errors (by Eu-

clidean distance) are respectively 0.56 m and 0.476 m. This

accuracy is much higher than the best result achieved by

WiFiSLAM (3 m) [6]. It is even sufficient for the localization

and navigation of service robots. The average required time

for processing each frame is 20 ms. A video supplementary

is attached to show the high performance of the proposed

framework with real experiments. More detail results of the

localization tests will be discussed in our future reports.

VI. CONCLUSION AND FUTURE WORK

In this paper, a real-time asynchronous blind light-signal

decomposition method and a corresponding tiny-length code

selection method are introduced for VLC-based indoor local-

ization system. The light-signal decomposition results indicate

that the proposed method can precisely and stably extract

the intensity data of each reliably received beacon code. The

VLC-based indoor localization system developed based on the

proposed encoding and decomposition method can achieve an

accuracy of 0.56 m which is the-state-of-the-art of its kind.

However, further research is necessary for the adaption of the

system in larger and more challenging scenarios. The future

work will consider influences from sensor orientation in 3D-

space, noise influences, and beacon grouping, etc.

VIDEO SUPPLEMENT

The attached video shows the dynamic localization results

of the entire VLC-based indoor localization system in the

experiment environment as shown in Fig. 3.
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