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Abstract— Moving objects are the primary concern for most
robot vision applications in dynamic environments. The ex-
istence of moving objects can lead to ambiguous decisions
such as searching loop closure in visual mapping applications.
Eliminating moving objects from the image sequences captured
by moving camera is the key challenge. In this paper, a novel
approach for moving objects removal using a hand-held RGB-
D camera is proposed. Only the visual and depth data are
used. No other sensor or prior information is needed in this
paper. Our approach can be exploited as a pre-processing stage
to filter out data that are associated with moving objects. We
test our approach with various ego-motion patterns in different
environments. The experimental results demonstrate that our
approach can provide a practical solution for motion removal
from moving platforms using an RGB-D camera.

I. INTRODUCTION

For robot vision applications, such as visual odometry,
navigation and mapping[1]-[2], plenty of effective approach-
es and algorithms have been proposed. However, most of
the existing solutions were developed under the assumption
of static environments. In dynamic environments, the ex-
istence of moving objects can lead to unstable results or
even failures. For instance, comparing the scene with and
without moving objects can corrupt the loop closing in visual
mapping. To reliably work in dynamic environments requires
robots being able to separate moving objects from static
backgrounds. Thus, it is of great significance for motion
removal from the image sequences captured by cameras on
moving platforms.

The motions in image sequences captured by a moving
camera are caused by camera ego-motion and moving ob-
jects. In order to eliminate the moving objects, the key
information is the ego-motion of the camera. With the camera
ego-motion, the moving objects can be detected by motion
compensation approaches. The ego-motion estimation merely
using visual sensors is usually called visual odometry. It is
an active topic which has attracted lots of researchers in
robot vision. The general idea of visual odometry is to derive
camera poses and orientations from associated images. Most
early approaches were developed based on feature tracking
techniques. The transformations can be found by minimizing
the cost function of the re-projection error between the
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feature pairs in consecutive frames. Recent approaches are
based on pixel intensity values. These approaches require the
assumption of brightness consistency of pixels in consecutive
frames. The ego-motion can be found by minimizing the
photometric errors.

With the camera ego-motion, it is possible to detect mov-
ing objects using the ego-motion compensation technique.
Kim et al. proposed a non-panoramic background modelling
approach[3] to detect moving objects from moving platforms.
The background can be modelled using pixel-wise spatio-
temporal Gaussian models from warped images. The moving
objects can be detected in the overlapped areas using the
background subtraction method.

The rest of this paper is organized as follows. In section
II and III, we present the details of our approach. In section
IV, the experimental results are discussed. In the last section,
we conclude this paper.

II. OVERVIEW OF APPROACH

In this paper, we proposed an RGB-D data-based motion
detection, tracking and segmentation approach. Our approach
is an online framework. A particle filter-based tacking mech-
anism plays a central role in this paper. In our method,
we purely use the visual and depth data from the RGB-D
camera. No other sensors such as IMU or prior information is
required. We adopt the similar motion detection and tracking
ideas proposed by Jung et al.[4] in this paper.

Fig. 1. The overview of our approach. The ego-motion compensation
and the frame differencing are the key operations in the detection stage.
m denotes the measurement information for the particle filter from the
detection stage, l denotes the likelihood information for the MAP estimation
from the tracking stage.

As shown in Fig.1, we use the RGB images for moving ob-
jects detection and tracking. The camera ego-motion[5] is de-
rived from two consecutive RGB images using the RANSAC
algorithm[6]. Note that the camera ego-motion is estimated
in 2-D image plane, which is convenient for the moving
objects detection in our approach. The moving objects are
detected by subtracting the ego-motion compensated frame
at time t−1 with the frame at time t. The pixel values of the
differencing image provide the measurement information for
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Fig. 2. The schematic diagram of the ego-motion compensation and the frame differencing techniques. The RGB Prev and RGB Curr represent the
previous and current images that are captured at time t−1 and t. We use the RANSAC algorithm to eliminate outliers. Moving objects are detected by
subtracting the RGB Curr with the compensated RGB Prev.

the particle filter. The particle filter improves the robustness
of the motion detection. The vector quantized depth image
at time t is employed for the image segmentation. With the
posterior belief from the tracking stage as the likelihood, we
can use the Maximum-a-posterior (MAP) estimation method
to find the cluster that has the highest foreground probability.
The segmented foreground cluster is treated as the moving
object in our approach.

III. DETECTION, TRACKING AND SEGMENTATION

A. Frame Differencing

In the case of static camera, the background in the con-
secutive frames remains not changed. All the movements in
the image sequences are caused by moving objects. When
subtracting the current frame with the previous frame, the
static background will be removed. The moving objects can
be indicated by the remaining pixel values.

Id(x,y, t) = |I(x,y, t)− I(x,y, t−1)|. (1)

As shown in equation (1), x and y are the pixel coordinates,
Id is the intensity value of the pixel in the differencing image.
The value of Id(x,y, t) is the absolute difference of a pixel
value at time t and time t − 1. The pixels that belong to
moving objects can be indicated by the image subtraction
results,

{(x,y) ∈ {Possible Foreground} | Id(x,y, t)> 0}
{(x,y) ∈ {Background} | Id(x,y, t) = 0}

(2)

Equation (2) discriminates the moving objects and the static
background from the pixel intensity values of the differenc-
ing image. We consider the pixel belonging to the static
background if the intensity value is zero. Higher pixel value
corresponds to higher foreground probability.

B. Ego-motion Compensated Frame Differencing

However, the frame differencing cannot work when the
camera is not static. The idea of this paper is to compensate
the previous image so that the frame differencing works like
in a static platform. Because the ego-motion is estimated
in 2-D image planes, we warp the image at time t − 1
using the 2-D perspective transformation computed from

the RANSAC inliers. Let T t
t−1 ∈ SE(2) denote the 2-D

perspective homogeneous matrix,

T t
t−1 =

a11 a12 a13
a21 a22 a23
a31 a32 a33

 ∈ R3×3, (3)

where ai j is a real number. This matrix represents the most
general form for 2-D perspective transformation.

As shown in Fig.2, we use the RANSAC algorithm[6] to
eliminate outliers. The inlier pairs of SURF feature points
are employed to compute the transformation caused by the
camera ego-motion. The feature points are matched using
the SURF descriptors. We treat the feature associations from
the background as inliers, and the associations from moving
objects or between moving objects and the background as
outliers. The number of inliers is expected to be larger than
the number of outliers. To find the homogeneous transforma-
tion matrix, we need at least 4 feature associations. Let Sa
denote the minimum set of feature associations required to
calculate the transformation matrix. SA denotes the set of all
the feature associations. In our case, |Sa|= 4 and |SA|= N,
where N is the total number of feature associations. Let
kmax denote the maximum number of iterations to find the
optimum transformation. kmax can be found by the following
equation,

kmax =
log p2

log(1− p|Sa|
1 )

, (4)

where p1 is the probability of a randomly selected feature
association being part of a good model, p2 is the probability
of kmax number of consecutive failures, there is p2 = (1−
p|Sa|

1 )kmax . We normally have p2 < 0.01 and p1 > 0.1, so
the number of iterations kmax << C|Sa|

N . Equation (4) can
avoid trying every set of associations, so the computation
cost can be reduced. Given a minimum set of associations,
we can find the transformation matrix T t

t−1 by solving a set of
linear equations. The position of a pixel (x,y) in the previous
frame can be transformed to (u,v) in the next frame. The
transformed coordinates are rounded to be integers. The ego-
motion compensated frame is denoted as IT (x,y, t−1). The
valid regions of the transformed frame are not the same as the
ones of the original frame. For example, the translation will
leave the regions near borders invalid. We fill these areas
black. In some cases, the scene is zoomed in or zoomed
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out. This may cause gaps or multiple pixel values at a same
location. We apply interpolation algorithms or take average
values in those cases. In each iteration, the transformation
T t

t−1 is evaluated through all feature associations. The prob-
ability of an association a belonging to the inlier set Sin is
defined as follows,

p(a ∈ Sin) = exp
(
− d2

σ2

)
, (5)

where d =
√

(u− x)2 +(v− y)2, σ is a small real number.
The probability is depending on the distance between the two
coordinates. We consider if p(a ∈ Sin) > p0 the association
a ∈ Sin, otherwise a ∈ Sout . p0 is a pre-defined probability
value. We record the number of inlier associations n in each
iteration. If n> ε , we refine the transformation T t

t−1 using all
the identified inlier associations and terminate the program,
otherwise, continue the iteration and dynamically update
the maximum iteration number according to n, ε is a pre-
defined threshold. The refined transformation can be found
by minimizing the sum of distances for all the associations in
Sin. We define an optimization problem for this refinement,

minimize
1
2

|Sin|

∑
i=1

[
(ui− xi)

2 +(vi− yi)
2]2

subject to (ui,vi) ∈ FT
prev, (xi,yi) ∈ Fcurr

, (6)

where FT
prev and Fcurr are the transformed feature points set in

the previous frame and the corresponding feature points set
in the current frame, |Sin| is the number of the inlier feature
association set.

With the ego-motion compensated frame IT (x,y, t−1), the
differencing image can be calculated as follows,

Id(x,y, t) = |I(x,y, t)− IT (x,y, t−1)|, (7)

where (x,y) are the coordinates in the current frame. Accord-
ing to equation (2), the possible foreground can be identified
according to the pixel values of the differencing image.
Fig.3 demonstrates the sample results of the ego-motion
compensated frame differencing method. In this scenario, a
person is walking straightly in an office room. The positions
of background pixels in (c) are similar as those in (b). The
blank areas caused by the transformation are filled black. The
moving objects can be indicated by the subtraction results.

C. Particle Filter-based Tracking

Let xxx denote the state variable of the particle filter.
It includes the particle positions and velocities. The state
variable of a particle i at time t is represented as follows,

xxxi,t = [xi,t , yi,t , ẋi,t , ẏi,t ]
T , (8)

where x and y are the coordinates of the particle, ẋ and
ẏ are the velocities along the two coordinate axes. The
state variable at time t can be predicted by the velocities
and the prior belief at time t − 1. With the measurement
information zt and the prior belief bel(xxxi,t) from the pre-
diction stage, the posterior belief bel(xxxi,t) can be estimated
by the Bayesian filter[7]. Let p(xxxi,t |uuui,t ,xxxi,t−1) denote the

(a) (b)

(c) (d)

Fig. 3. The sample results of the ego-motion compensated frame differ-
encing method. (a) and (b) are the images captured at time t−1 and t. (c)
is the warped version of (a). (d) is differencing image between (b) and (c).

transition probability from time t−1 to t, p(zi,t |xxxi,t) denote
the measurement probability at time t. We have the following
Bayesian recursive equations,{

bel(xxxi,t) = ∑ p(xxxi,t |uuui,t ,xxxi,t−1)bel(xxxi,t−1)

bel(xxxi,t) = η p(zi,t |xxxi,t)bel(xxxi,t)
, (9)

where η is a normalization constant[8]. The belief bel(xxxi,0) at
t = 0 is initialized with a uniform distribution. We randomly
and uniformly deploy N particles in the image plane at the
beginning.

In order to reduce the computational cost, we just consider
the position information in the state variable. We adopt a
Multi-variate Gaussian transition model in this paper. The
positions at time t can be predicted using a Gaussian dis-
tribution centred at the transformed positions. The transition
probability is described as follows,

p(xxxi,t |uuui,t ,xxxi,t−1) =

1√
(2π)k|Σ|

exp
[
− 1

2
(xxxi,t −µµµ i,t)

T )Σ−1(xxxi,t −µµµ i,t)
], (10)

where µµµ i,t is the ego-motion compensated version of xxxi,t−1,
|Σ| is the determinant of the variance Σ, k is the dimension
of the problem. We delete the particles that are out of the
image range after the motion update.

The measurement probabilities exist in the weights of the
particles. As mentioned before, the intensity value of a pixel
in the differencing image encodes the probability of the
pixel being the foreground. However, in order to improve
the robustness for weight computation. We also consider the
neighbouring pixels. The weight wi for particle i is calculated
using a 2-D Gaussian kernel. We choose a circle as the
neighbouring area that has M number of pixels. The value
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of wi is given by the following equation,

wi,t =
M

∑
j=1

Id(x j,y j, t)
1√

(2π)σ
exp
(
− d2

2σ

)
, (11)

where x j, y j are the coordinates of pixel j, Id(x j,y j, t) is the
intensity value, σ is the standard deviation of the Gaussian
kernel, d =

√
(x j− xi)2 +(y j− yi)2 is the Euclidean distance

between pixel j and particle i. The weight of a particle
is actually a weighted average of the neighbouring pixel
values in the differencing image. In the re-sampling stage
of the particle filter, we apply the Sequential Importance
Re-sampling (SIR) technique to generate new particles. The
importance is proportional to the weights of the particles.

D. Vector Quantization-based Segmentation

Vector Quantization (VQ) is a kind of lossy data compres-
sion method. It can map a vector set into a subset of itself or
a set with less elements. The vectors in the original set are
represented by a limited number of different vectors. For VQ
in our approach, the vector is composed of the pixel values.
The distortion error for a vector vvv∈RN×1 with the quantized
one vvv∗ ∈ RN×1 is determined as follows,

D(vvv,vvv∗) =
1
N
(vvv− vvv∗)T (vvv− vvv∗), (12)

where N = 3 in our case, note that we use color depth images.
To quantize an image is to map all color vectors into different
clusters, so the problem of quantization for an image can
be solved by clustering pixels using the position and color
information. In this paper, we apply the K-means algorithm
on depth images[9] for vector quantization. The reason why
we use depth images is that moving objects can be more
easily retrieved from depth images than RGB images. As
shown in Fig.4, we can clearly find that the walking person
can be easily extracted from the quantized depth image.

With the quantized depth images, we can segment the
moving object using the MAP estimation. Let p(sk,t) denote
the probability of cluster k being the foreground. To get the
segmentation result is to find the cluster that has the maxi-
mum foreground probability. The MAP estimation is able to
compute the posterior probability using the likelihood from
the tracking results. Let p(m|sk,t) denote the posterior belief
from the particle filter. The posterior probability p(sk,t |m)
can be computed by the following equation,

p(sk,t |m) =
p(m|sk,t)p(sk,t)

p(m)
, (13)

so the segmentation problem becomes to find the cluster k
that corresponds to the maximum posterior probability,

k = argmax
k

p(sk,t |m). (14)

The probability p(sk,t) is the prior probability for cluster k
being the foreground, p(m|sk,t) is the likelihood from the
tracking stage, p(m) is a normalization constant. For each
segmentation the current depth image is re-quantized, so the
prior probability is in a uniform distribution all the time. We
use the proportion of particles that lie in the cluster k to

(a) (b)

(c) (d)

Fig. 4. The comparison between the quantized RGB and depth images.
The cluster number is 5. (a) is the original RGB image, (b) is the quantized
RGB image, (c) is the original depth image (depth increases from red to
green), (d) is the quantized depth image. We can see the person can be more
easily identified due to the less texture information in the depth image.

model the likelihood. The likelihood p(m|sk,t) is given by
the following equation,

p(m|sk,t) =
nt

Nt
, (15)

where nt is the number of particles that lie in the cluster
k at time t, Nt is the total number of the particles at time
t. The value of p(m|sk,t) encodes the likelihood for each
cluster being the foreground. Higher value indicates higher
possibility being the foreground.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

A. Experimental Setup

We perform the experiments using Asus Xtion. Due to
the intrinsic limitation of the RGB-D camera, we only
perform experiments in indoor environments. The tested
indoor environments in this paper are listed as follows,
• Environment I is a common indoor office room. No

remarkable negative factor for camera sensing exists.
• Environment II is an office room which contains shiny

surfaces such as glass windows or monitor screens. The
shiny surfaces can lead to unstable or invalid depth
measurements.

• Environment III is a common indoor hallway. There
exist large out-of-range depth areas when using some
ego-motion patterns.

• Environment IV is similar as the second environment.
It has an large paper board for occlusion test.

Walking persons are used as moving objects in this paper,
because walking persons are the most common moving
objects in indoor environments. The person walks in a normal
speed during the experiments. Four typical camera ego-
motion patterns are considered. They are listed as follows,
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TABLE I
QUANTITATIVE RESULTS FOR OUR EXPERIMENTS IN VARIOUS SCENARIOS (Left : φ , Right : π )

Ego-motion Patterns Environment I Environment II Environment III Environment IV

Parallel (Mobile Robot) 97.50% 100.00% 92.00% 100.00% 97.78% 86.36% 87.76% 100.00%
Circle (Mobile Robot) 97.30% 100.00% 90.48% 100.00% 93.18% 97.56% 87.88% 98.28%

Opposite (Mobile Robot) 97.56% 97.50% 90.91% 95.00% 97.78% 97.73% 85.71% 95.83%
Irregular (Hand-held) 95.00% 96.49% 84.51% 98.33% 99.03% 98.04% 87.14% 93.44%

• Parallel: The camera moves in parallel with the working
person.

• Circle: The camera rotates around a fixed point when
the person is walking.

• Opposite: The camera and the person are moving in an
opposite direction. They will meet somewhere finally.

• Irregular: The camera is hand-held by a person to realize
irregular ego-motion.

The first three ego-motion patterns belong to the regular
motion. We realized them by fixing the RGB-D camera on a
mobile robot. The last one belongs to the irregular motion.
We realized it by hand-held. It should be noted that our
approach requires no prior information including the above
mentioned ego-motion patterns.

Our program use the VGA resolution. It runs on a laptop
with an Intel i3 CPU. The numbers of particles and clusters
are fixed to 1000 and 5 respectively. Other parameters, such
as the thresholds in RANSAC, are set empirically to moder-
ate values. Our program can be real-time for motion detection
with GPU-SURF. The most time-consuming operation is the
image segmentation, which costs about 500ms.

B. Evaluation Metrics

The motivation of our approach is to remove moving
objects out of the image sequences captured from moving
platforms. Considering our potential applications, it is im-
portant to check whether our approach is able to fully filter
out moving objects, rather than measure the preciseness or
recall values of the image segmentation. Thus, we propose
an metric the Rate of Successful Motion Removal (RSMR)
which is denoted by π to evaluate the motion removal
performance. The successful motion removal is confirmed
when the moving object can be fully filtered out.

π =
m
f , (16)

where m is the number of segmentation results that can fully
filter out the moving object, f is the number of successfully
tracked frames. Only the successfully tracked frames are
used to evaluate π . In order to evaluate the tracking results,
we adopt the commonly used evaluation metric the Rate
of Successful Tracking (RST) which is denoted by φ . The
successful tracking is confirmed when the moving object
cluster has the maximum number of particles lain on it.

φ =
f
F
, (17)

where f is the number of frames that are successfully

(a) (b)

(c) (d)

Fig. 5. Two typical motion removal failure cases. (a) and (c) are captured
under the Parallel and Irregular ego-motion cases in environment III. Red
dots are the particles which show the tracking results. (b) and (d) are the
mask images which show the segmentation results.

tracked, F is the total number of frames in a sequence. The
value approximates 40-60 for each test, but 100 for the hand-
held case in the hallway.

C. Results and Discussions

Table I summarizes the quantitative results of our experi-
ments. We can see our approach is able to provide practical
tracking and segmentation performances. Our approach can
achieve 100% success for segmentation especially in the
Parallel and Circle ego-motion cases.

Tracking failures are mainly caused by the false positives
of motion detection. The wrongly classified motions can
distract and re-distribute the particles. Unfavourable factors
such as fast movements, suddenly stopping, sensor noises or
object occlusions can lead to the false positives. For example,
the shiny surfaces in environments II and IV can cause
unstable measurements, so we can see the performances are
a little bit degraded. The involvement of partial occlusions
can lead to the tracking lost when the person moves in or
out of the paper board. Because those unfavourable factors
are unavoidable in our experiments, the values of φ for all
experiments cannot achieve 100%.

Fig.5 shows two typical motion removal failure cases in
our experiments. In (a), the person is over-segmented because
the number of clusters seems too large for this case. In (c),
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Frame 17 Frame 27 Frame 37 Frame 47 Frame 57

Fig. 6. The successful results in the hand-held case at environment I. The rows from the top to down are the tracking results, the corresponding depth
images and the segmentation results. The width of the ROI is 1.4 times of the width of the rectangular contour of the particles.

the distance between the body and the leg is so large that the
algorithm fails to classify the whole body into one cluster.
There exist some parts of the background that have similar
distance as the walking person to the camera. Those parts
of background can be mis-classified as foreground due to
the similar depth data. To avoid this case, we can do the
segmentation within a Region-of-interest (ROI) provided by
the rectangular contour of the particles. In Fig.5(c), we set the
width of the ROI to 1.3 times of the width of the rectangle.
The height of the ROI is set to the height of the image. Note
that the quantitative results are obtained without using ROI.

Fig.6 demonstrates sample successful tracking and seg-
mentation results. We can see our approach is able to track
and segment the moving object correctly. In the figures,
the particles tend to converge on parts of the body that
have higher speed. This is because these parts provide
higher motion detection likelihood. Due to the unstable depth
measurements at object boundaries, the segmentation results
cannot be precisely consistent with the moving object.

V. CONCLUSIONS

In this paper, we proposed a novel approach for motion
removal using a moving RGB-D camera. No prior knowledge
is assumed in our approach. Only the visual and depth data
from the RGB-D camera are used. The experimental results
demonstrate that our approach can provide a practical solu-
tion for motion removal on moving platforms. Our approach
adopts an online framework and can keep the time cost at a
relative low level when using a low-end laptop.
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