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Robotic Online Path Planning on Point Cloud

Ming Liu, Member, IEEE

Abstract—This paper deals with the path-planning problem
for mobile wheeled- or tracked-robot which drive in 2.5-D envi-
ronments, where the traversable surface is usually considered
as a 2-D-manifold embedded in a 3-D ambient space. Specially,
we aim at solving the 2.5-D navigation problem using raw point
cloud as input. The proposed method is independent of tradi-
tional surface parametrization or reconstruction methods, such
as a meshing process, which generally has high-computational
complexity. Instead, we utilize the output of 3-D tensor vot-
ing framework on the raw point clouds. The computation of
tensor voting is accelerated by optimized implementation on
graphics computation unit. Based on the tensor voting results,
a novel local Riemannian metric is defined using the saliency
components, which helps the modeling of the latent traversable
surface. Using the proposed metric, we prove that the geodesic
in the 3-D tensor space leads to rational path-planning results
by experiments. Compared to traditional methods, the results
reveal the advantages of the proposed method in terms of smooth-
ing the robot maneuver while considering the minimum travel
distance.

Index Terms—Mobile robots, navigation, path planning.

I. INTRODUCTION

HE DEVELOPMENT of robotics is always inspired by

human experience and activities [1]. Taking the typical
scenario shown in Fig. 1 for instance: an elder man is trying
to fetch the blue cup which is filled with his favorite coffee.
With rational consideration, he probably would take the cyan
(light color) detour rather than the red (dark color) bumpy
path. For this situation, it hardly makes sense to take the red
path, even though the red path leads to an accumulated shorter
distance.

Derived from that, such a concept is usually extended to
robotic planning for navigation, using various cost or poten-
tial functions [2] depending on selected criteria or applications.
The generated path ought to not only regard the shortest
Euclidean distance, but also ease the maneuver.

A. Robotic Challenges

Most existing navigation algorithms for mobile robots
assume that the configuration space of the traversable path
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Fig. 1.

Typical scenario that implies rational planning.

lies on a developable surface [3], [4]. It means that the map
can be simply considered as a 2-D plane [5] without distor-
tion, or directly projected to a 2-D plane without information
loss. It is originated from the widely applied representations
derived by mature 2-D SLAM techniques [6], such as filtering-
based methods [7], [8] or pose-graph-based methods [9]. Such
an assumption exempts the requirement on detailed analysis of
the local shape of the terrain. However, the robot ought to deal
with these dynamics introduced from the 3-D terrain shape,
considering the complexity of the real environment [10].

In recent years, the fast development of 3-D mapping
techniques [11], [12] and sensors [13] enables the mod-
eling of the multiterrain environment [14] for practical
applications [15], [16]. As the raw output from these 3-D map-
ping techniques, point cloud has been widely studied. The
following major aspects make the analysis on raw point cloud
a challenging problem, let alone the navigation on it.

1) Unreliability of Observation: The unreliability is multi-
fold. In Fig. 2, we show a cropped part of point cloud
observed from an indoor semi-structured environment.
Outliers, missing points and nonuniform distribution of
points are the major drawbacks in real applications.

2) Large Amount of Sparse Data: The 3-D sensor usually
generates a large amount of points per scan. However,
points are not continuously defined in the 3-D space.
The missing information among points, especially latent
structural information, must be recovered by subtle
filters.

3) Computational Complexity: Due to the large amount of
data as shown in Fig. 2, the high-computational cost is
a bottleneck for most applications.

Because of these challenges, especially the lack of
structural information, many works tried to avoid direct
operations on points, leading to various representations,
e.g., meshed surface [17], [18] or tree-based structures [11],
which were inspired from topological segmentation of 2-D
environments [19]-[21]. Despite these difficulties, here we
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Fig. 2. Clip of typical point cloud and common observation noises.

tackle the navigation problem as manifold modeling, by using
raw point cloud as input. It is because we aim at solving
the related problems in real time, and the raw point cloud
is the most readily available representation. In order to cope
with the large amount of sparse data, we adopt tensor vot-
ing framework (TVF) [22] for this paper. For the purpose of
reducing the computational complexity, a graphics processing
unit (GPU)-based implementation is introduced, which enables
the TVF calculation in near real time. After that, we construct
a novel local Riemannian metric based on saliency compo-
nents derived from TVF, which aids the further analysis of the
surface properties and the corresponding tensor field. Please
note that our recent work [10]! has extensively studied the
feasibility to plan a path in 3-D using point cloud representa-
tion. Comparing with grid-based algorithms [23], it has shown
better flexibility with additional information embedded in a
tensor field. This paper is based on these existing findings and
develops a theoretically closed-form representation for simi-
lar problems. The proposed work is designed for global path
planning with real-time constraint [24].

As a typical application, we present how such a Riemannian
metric can be used for trajectory planning, especially for cal-
culating the distance between the two points in the point cloud.
We take advantage of the stick saliency of TVE, which indi-
cates the strength of local planarity. This information is used
to help them generate a trajectory that can be viewed as a
“rational path,” i.e., the resulted path tries to drive along flat
areas, to avoid climbing redundant slops and to avoid paths
that lead to much vibration on the way-path. The mathematical
criteria for the evaluation are introduced in Section V.

B. Contributions

In this paper, the following aspects are addressed.

1) A GPU-accelerated implementation of TVF for 3-D
point cloud. We show significant improvement in perfor-
mance comparing with optimized CPU implementation
and other related methods.

IColas et al. [10] were the winner of the best RoboCup Paper Award for
IROS 2013.
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Fig. 3. Proposed pipeline to process point cloud in robotic mapping and
navigation.
2) Surface normal estimation using sparse tensor

voting (STV). We compare two different algorithms in
terms of precision and complexity. We show that the
STV-based algorithm is more precise and flexible.

3) A Riemannian metric defined on tensor voting vector
field is introduced, which indicates the local similarity
of the surface orientation and curvature.

4) A generic modeling approach based on TVF for nonpla-
nar surfaces is introduced.

5) Trajectory is planned on raw point cloud without the
preprocessing such as mesh reconstruction [18], [25].

6) A path planning pipeline for mobile robots on point
cloud, validated by both simulation and tests on
real data.

C. Proposed Pipeline to Process Point Cloud in Robotics

We propose to manage robotic navigation problem using
raw point cloud as input, as shown in Fig. 3. The point
cloud representation is inherently sparse, which means not
any arbitrary point in the configuration space has definition.
This sparse representation is hard to deal with, since the miss-
ing information among points lead to miss representation for
path-planning algorithm to work on. Therefore, a dense rep-
resentation, such as a tensor field or a mesh, is necessary,
before designing navigation algorithms. Additionally, when a
dense representation is available, applications such as structure
analysis [26] and segmentation [20] could be handily treated.

D. Organization

In Section II, the related works are reviewed. The notations
and general summary of TVF are introduced in Section III.
The GPU implementation (released as open-ware) of ten-
sor voting is introduced and evaluated in Section IV. After
that, we introduce the novel Riemannian local metric in
Section V, where the distance function is extensively studied.
In Section VI, the pipeline to achieve optimized trajectory
planning using the proposed framework is presented. The
simulation results and tests on real data are introduced in
Sections VII and VIII, respectively. The conclusion is given
in Section IX.

II. RELATED WORK
A. Robotic Navigation in 3-D

Navigation problem is mostly about path generation under
various constraints, such as observability [27], resources [28],
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coverage optimization [29], [30], and space constraints [31].
For 3-D navigation of a robot, researchers working on
unmanned aerial vehicle have proposed several practical
approaches [32], [33] to generate path in a full 3-D space,
regarding different kinematic constraints. In these works, a pri-
mary concern is how to maintain a reliable pose estimation
of the robot. Nowadays, computer vision usually worked as
the primary method to get the pose estimation [34], [35].
Belta and Kumar [36] proposed a theoretical perspective into
path generation problems, where the motion generation was
considered as a projection to S€(3) by minimizing the accel-
eration. The results were validated via simulation or in test
environments where ground-truth poses were available.

For the robot considered in this paper, point cloud generated
from a rotating laser rangefinder on a mobile robot is used as
the only extroceptive sensory information. It results in a more
challenging problem due to two primary reasons: first, point
cloud is sparse information, which means that not all locations
in the space have definition; second, it has constrained view
angle from the ground level. Usually, only the objects near the
robot can be sensed.

Another typical path generation problem in 3-D is trajectory
generation for robotic arms. A state-of-the-art library named
“Movelt!” was proposed in [37]. In this scenario, the pose
estimation of the arm is usually not of great concern, since it
could usually be recovered by geometric constraints from the
3-D rigid body motion. It generally aims at generating a path
to avoid the collision from the robot body to the obstacles
from the environment [38] (usually denoted by point cloud as
well). In this paper, we aims at an optimal path which enables
the robot to move along the latent surface governed by the
point cloud, which is theoretically more complex system.

In our previous work [10], we proposed a heuristic method
to generate a path on point cloud using the TVFE, where we
did not consider the vibration and the smoothness for the
robot to realize the path. In this paper, we mainly deal with
this remaining problem. Moreover, the previous work required
dense voting which is computational expensive. We propose
in this paper a Riemannian metric to summarize local infor-
mation by using only the results from sparse voting, leading
to a much light-weight algorithm.

B. Path Planning for Complex Environment

Path planning on 2-D developable plane has been a solved
problem, since several open-source libraries were available
to the community [39]. Several researchers have tried to
adopt similar algorithms also apply in outdoor scenarios like
autonomous cars, where the problem mostly lies in percep-
tion and the latent driving rules [40]. With identified free
space, the planning can be performed by a generic graph path
planners [41]-[43]. Such that the planning problem is con-
sidered as an optimization problem that minimized the cost
function between search nodes. This idea is also adopted by
the proposed approaches, where the cost is defined to facilitate
the robotic motion as well as minimizing the path length.

On the other hand, 3-D path planning for aerial [44] or
underwater [45] robots have also been studied, leading to
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stochastic approaches that cope with the increased com-
plexity in space like rapidly random trees [46] and neural
network-based planning [23]. Those approaches allow for the
exploration of a more complex search space which is not easily
feasible with deterministic methods.

C. Surface Normal and Segmentation

Surface normal is a local consistent feature. Therefore, it
is widely used for point cloud analysis [47], [48]. Regarding
segmentation, the work by Pulli and Pietikdinen [49] aimed
at segmenting range images into homogeneous regions, by
decomposing x- and y-component of the normal vectors. It
assumes perfect dense point clouds and the resulting algorithm
only deal with segmentation in 2.5-D. Normal estimation can
also be based on local constrained least square modeling [50].
These normal estimation results often lead to clustering or
segmentation of point cloud, such as by an initial segmen-
tation in normal space, then refines in distance space [51].
Teutsch et al. [52] presented a clustering algorithm for sub-
set segmentation, which targets at segmentation of point
clouds without plane-assumption. Reference [53] introduced
an incremental way to model different clusters by using both
angular and distance constraints. Further region-based seg-
mentation algorithms were introduced in [20], [54], and [55].
Reference [56] is a recent report report on different criteria
for surface normal estimation of 3-D range data. In this paper,
we show the advantage of STV for surface normal estimation
using the proposed GPU implementation.

D. Tensor Voting Framework

Tensor voting [22] is originated in computer vision. It has
been applied to applications such as segmentation [57], [58].
Through these works, tensor voting has shown its importance
in reconstructing missing structures and local information
registration [59], [60]. We consider it as one of the most
important algorithms for structural analysis, because it out-
performs other methods by its tolerance to noise and missing
data, its consistency for local information and intuitive extrac-
tion of evidence saliency, etc. Preliminary work using TVF for
planning has been proposed using an iterative algorithm over
the dense voting grids [61], where the generated path adapts
to smooth local curvature due to the nonholonomic motion
constraints. In this paper, we use the results from sparse vot-
ing to facilitate the robot manoeuvre. The local information is
represented by a Riemannian metric.

Nevertheless, the computational cost of tensor voting is
high. The original algorithm has complexity O(N?), where
N is the number of points in the point cloud. In this paper,
we proposed a parallel computation, which was further opti-
mized considering the advanced calculation characteristics of
compute unified device architecture, in order to improve cal-
culation efficiency, e.g., using coalesced memory access and
avoiding atomic operation.

E. Geodesic on Point Cloud

Provided with the surface model, the geodesic calcu-
lation is relatively easy, such as using iterative midpoint
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(d)

Fig. 4. Typical results from TVF. (a) Raw point cloud. (b) Result of STV. The color map indicates the stick saliency of each point. (c) and (d) Results of
DTV in terms of stick and plate components, where the radius of the spheres indicate the stick and plate saliency, respectively.

search or approximating by descent gradient [62]. An efficient
method based on contour propagation was proposed in [63].
Meanwhile, several works have put effort to calculate geodesic
on a point cloud. Ruggeri et al. [64] proposed an approxi-
mation method for energy minimization, regarding errors for
local surface fitting. In our case, the local surface information
is embedded in TVEF, which is computationally more effi-
cient since the voting procedure is linear in time on GPU.
Mémoli and Sapiro [65] explained the intrinsic properties for
geodesic on point clouds, considering manifold sampling and
noise.

However, all these existing works deal with the point cloud
only in Euclidean space, i.e., E3, which equips a Riemannian
metric as a rank-three identity matrix. It introduces inher-
ent drawbacks for robotic navigation, since it assumes the
whole configuration space is linked by straight geometry.
Nevertheless, as long as the robot is moving on the “ground,”
its motion is strictly constrained. In order to ameliorate that,
we define a Riemannian metric in the tensor space T intro-
duced by TVFE. The smoothness of such a space indicates the
similarity of local smooth structures instead of direct distances.
By analyzing the metric of TVF (T?) in terms of the direction
of eigen vectors, we obtain the weights for edges of a graph
constructed by sample points.

III. TENSOR VOTING FRAMEWORK

In this section, we briefly summarize basic concepts of
tensor voting over 3-D point cloud and the notations.

A. Overview

Tensor voting [22] is a computational framework used
for structural extraction based on saliency of basic geomet-
rical elements. It originated in computer vision problems.
King [60] extended its application regarding point cloud-based
terrain modeling and proposed an optimized stick voting field.
Following a generic pipeline described in [66], we construct
sparse ball voting fields eyes(3), and broadcast it through each
neighboring point by a decay function, for each point:

42
k(d,o) =e o? (1
where d is the Euclidean distance between the voter and
votee, and o is a selected kernel size. The decay function
defines the decayed strength in broadcasting local informa-
tion to the neighborhood. For robotic navigation applications,

the kernel size can be chosen as the size of the navigation
footprint.

The collected votes from each point lead to a 3 x 3 tensor
containing the neighboring structural information. The eigen
decomposition of the 3 x 3 tensor T can be formulated as

A AT A AT ~A AT
T =oaje1e; + arere, + azezes

= (a1 — otz)éléIT (stick component)

+ (ap — a3) (élélT + ézé; ) (plate component)

+ a3 (@ 1@{ + ézézT + égég ) (ball component)  (2)
where «;’s are eigenvalues sorted in decreasing length
sequence and ¢;’s are the corresponding eigenvectors. The stick
saliency can be represented by A1 = o1 —a3. The stick saliency
for each point indicates how confident that a point can be con-
sidered as lying on a local plane. The corresponding tensor,
indicating the plane, is characterized by the normal direction
of the local plane e;. Similarly, A, = ap — a3 denotes the
saliency of a point on an edge or curve; A3 = o3 denotes the
saliency of a point as a free point, mostly an outlier. For
the interested readers of the detail calculation of TVE, please
refer to [60].

This process is called STV, because the voting procedure is
only performed on sparse location of the points. Generally,
a dense tensor voting (DTV) process is also implemented
based on the results of STV. DTV will cast for each point the
tensor from STV to its neighborhood, which leads to more
reliable structure representation. Typical results of TVF on
a toy dataset is depicted in Fig. 4, where Fig. 4(a) shows
the raw point cloud which includes four plane structures.
Fig. 4(b) shows the computed stick components, where the
stick saliency, highlighted by a color map, indicates the belief
that a point is lying in a local plane. Fig. 4(c) and (d) demon-
strates the results of DTV. The scales of the sphere markers
indicate the strength of stick saliency (for planes) and plate
saliency (for edges).

B. Information Embedding

Usually, the so-called dense voting is applied after sparse
voting, because sparse voting only provides information at the
exact positions of points in the point cloud. Due to the gen-
eral nonuniform density of the points, caused by view-point
changes of the sensor, these sparse information may not be
easily usable. However, even with online optimization [10],
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TABLE I
PERFORMANCE GAIN BY OPTIMIZATION

Method  Exe. time (ms) Speed-up  Accu. speed-up  Comment
CPU 728479 / / optimized code
naive GPU 11165.6 65.24x 65.24x using Atomic operations
apply fast math 2287.4 4.88x 318.45x e.g. _ fsqrt_rn
using voter loop 1119.4 2.04x 650.72x
using shared memory 1063.6 1.05x 684.85x

the dense voting process is generally computationally very
expensive, since it requires regeneration of the tensor field
at each sampled position. In order to realize path generation
in near real time, it is preferable to not include the dense
voting procedure. In this paper, we propose a metric embed-
ding method to recover the local information as shown in
the next section. At the same time, it enables to generate an
optimal path which is a compromise between minimum dis-
tance and smoothness. Therefore, the components from STV
are used for the path-planning algorithm introduced in this
paper. Each point in a point cloud V can be defined as a
surfel v;

T
V= {vilvi = (xi, yi. i e1. €2, €3, a1, 0, 03)" ). (3)

The position of point is further denoted by s; := (x;, y;, L.
In the neighborhood of s;, a smooth manifold of the same
dimension as the voting tensors can be embedded [67],
because of the continuity of the tensor voting procedure. The
local manifold is represented by M;, which is equipped with a
Riemannian tensor g;. For the convenience of representation,
we omit the subscript and denote the Riemannian manifold as
(M, g) for the rest of this paper, where g is the corresponding
Riemannian metric.

IV. TENSOR VOTING AND TENSOR SPLIT ON GPU

We summarize the parallel TVF in this section. At the same
time, we address several technique details which are directly
related to the performance.

A. Structure Overview

The sparse voting kernel is depicted as in Fig. 5. There are
two main blocks executed on GPU lying in the middle part
of Fig. 5, which are designed for tensor field propagation and
tensor split, respectively. The tensor split algorithm is using
orthogonality constraints proposed in [68].

B. Implementation

In order to improve the performance, we used several
conducted techniques. The comparison by applying these tech-
niques (mean of five runs) are shown in Table I, where we
executed sparse tensor ball voting with the same kernel size
for 14 K points. We start with the result of an optimized CPU
code, followed by the naive GPU implementation [69]. Then
by applying different techniques, we reach to the proposed
algorithm. There has been other work reported on GPU-based
tensor voting [69]. Comparing with this state-of-the-art [69],
several optimizations have been conducted in this paper.

PointCloud

(_ Copy From CPU to GPU )

Kernel Allocation

token « globalldsx; T
foreach point p as voter

{
vote = cast_tensor_field(p, token);
field[token] += decay()*vote;

}
get: field[token]

token « globalldx; " GPU

= eigen_decomposition(field[token])
saliency {stick, plate, ball}

= tensor_decomposition(

get: saliency[token],

T
L

J
( Copy from GPUto CPU )

[ Tensor Representation ]

Fig. 5. Algorithm overview for GPU-based STV.

Besides ordinary measures such as by using fast math library,
one major optimization is that the iterations of voter’s are taken
as base-loop instead of votee-based iterations. This change is
critical for the following two reasons.

1) The final tensor component is gathered information by
each votee. When use voter-based iteration as base loop,
the generation of output needs noncoalesced access of
memory space. It is extremely inefficient for most GPU
hardware comparing to coalesced access [70].

2) Because of the noncoalesced access, atomic operations
are required, which is again a performance blocker
for GPU computation. It is reported to be thousand
times slower than direct cycle [71]. The proposed voter-
based loop will alleviated this by direct shared memory
access.

We could see that the proposed framework, which uses votee-
based loop instead of voter-based loop, greatly reduces the
calculation time as shown in the next section.

C. Effect of Kernel Size and GPU Performance

The size of the voting kernel o greatly affects the compu-
tational complexity. A greater o leads to quadratically more
points to vote. By varying the size of o, we show the execution
time of STV and tensor split in Fig. 6. Since o also defined
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Fig. 6. Top: execution time for different implementation. Bottom: number

of votes by changing kernel size o.

the size of neighborhood for the robot, we want to make sure
it can span at the minimum the rotating diameter of the robot.
In our case, it is 0.7 m. The dataset is the stair point cloud
shown in Fig. 2 which contains 14 K points. Please note that
for standard tensor voting, points within the range of three
times o are considered. The number of votes is illustrated in
Fig. 6 (bottom). It depicts the results on CPU and two different
types of GPUs. We could see that the GPU implementation
is superior to CPU in terms of calculation speed. Moreover,
since the allocation of GPU computation is in unit of blocks,
the increment of computational time is less than CPU for large
number of points.

V. RIEMANNIAN METRIC EQUIPPED ON TVF

In order to enable the navigation on point cloud, a metric
defined on TVF is proposed. The definition of the metric is
introduced and its properties are discussed in this section.

A. Projection and Transition Function

The embedded manifold M can be interpreted as shown in
Fig. 7. For each point s in the point cloud, subjecting to the
local latent surface, a neighborhood homeomorphic ! to
an open subset in the TVF space can be defined. The corre-
sponding manifold is equipped with a Riemannian metric g,
which determines the inherent relations between a point and its
projected neighborhood. Adopting the results from TVE, we
build the metric g in such a way that local roughness of the
latent surface can be reflected. This property is specifically
interesting for the use case of trajectory planning. Usually,
the optimal trajectory is not necessarily the shortest; instead,
the smoothness in curvature is also important. For example,
if the one with the shortest Euclidean distance passes through
rough terrain or induces complex morphological adaptations,
a relatively longer but flatter trajectory is preferable, con-
sidering the manipulation risks and power consumption for
the robot.
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Fig. 7. Intuition of the embedded local manifold for points in E3. The
dashed line indicates the latent surface, here we use a 10-nearest neighbour
density-filter for point sampling.

B. Metric Definition

The Riemannian metric on M is a family of inner products
on each tangent space T, M, such that it depends smoothly on
p, Yp € M. However, the specification of the T),M is trivial if
and only if it possesses a frame of global sections, e.g., a vector
field is defined on M.2 Therefore, for the case that a tensor
field has already expanded the point cloud S, the Riemannian
metric g can be arbitrarily defined, as long as it is canonical.

Regarding the geometric components introduced in TVE,
the stick component indicates the flatness of a local latent
surface, with eigenvector expanding élTél; on the other hand,
the orthogonal plane is expanded by &’ & + 3 é3. Inspired
by the 2-D metric introduced in [67] and [73], with symmetric
positive-definite tensors, we propose the following Riemannian
metric:

8(s) = T3 + ¢p(1(s) (81 ()81 (s)")
+ Y1) (@1()e1()T +e2()e2(9)7) (7

where 73 is an identity matrix, derived from the Euclidean
space; A1(s) is the normalized stick saliency, and é;(s) indi-
cates the ith component of the local tensor for site s derived
from TVE. Now, we would like to design a Riemannian met-
ric on the TVF ambient space, so that by using the proposed
metric, the following two properties are guaranteed.

1) A unit vector is along the most desirable curve when

the vector is normal to e1(s).

2) A unit vector is along the most undesirable curve when

the vector is parallel to e1(s).
For example, if the embedded vector is the control velocity to
the robot, it means that we want to keep the robot moving on
a flat surface as much as possible; at the same time, avoiding
climbing redundant hills, etc.

Guided by these properties, we define the co-efficiencies
¢(-) and ¥ (-) using the combination of exponential func-
tions, where we need to ensure (¢ (x)/¥ (x)) is monotonically
increasing and (¢ (0)/v¥(0)) = 1. We set

ekx
¢ = P
and
e—kx
v(x) = PP (%)

2The routine proof for this proposition is omitted here. The readers are
referred to [72] for details.
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IClpm = / VT 8T ds
k}»|(¥) —k)»](s‘) T T
/ 13 t e e o T ®e®’ + FO) 1 oW (e1()e1()7 + e2(s)é2(s) ))fs ds
k1 (s) oK) kA1 ()
— T e 2, e 2, e a2
= f \/’S Lo+ 0 5 e ® e+ kmm T e k) Wl + e T e kG [l ds
" . ek )
f I3t + | el| + |tTe,| (ekkl(s) +e—k/\1(s)) ds
= tTg, + }1761|2 + }IT22|2 L ds (6)
o s s s &2k () + |

Please notice that the ball saliency is not considered in (7),
because the free points are less of interest for structural
information.

C. Distance Derivation

Using the proposed metric g, the Riemannian curve length
C is obtained by the integral over inner products on M, as
in (6), shown at the top of the page, where 7, defines the
direction derivatives on the manifold. Given the results in (6),
the following properties can be drawn.

1) The length decreases when the direction of e; diverges
from 75, where |IST¢?1|2 indicates the cosine of the
separation angle.

2) When the stick saliency A grows, the length decreases,
which coincidentally means that the integral path lies on
a flatter surface.

3) The local minimal direction is orthogonal to the sec-
ondary eigen vector &;, where |t1é;|? is minimized. It
implies that the local geodesic is along the é3 direc-
tion (or its opposite) in Ty. This information may help
the exploration task for mobile robots, since the corre-
sponding direction is the easiest one to approach. Further
discussion is not included in this paper.

4) Based on the last item, when the robot is moving in
the direction of e3, the Euclidean distance is used.
Otherwise, the curve length is greater than the Euclidean
distance.

5) It does not depend on parametrization of the curve,
that is

IClm = / . tlg(s)ty ds :f \/rfg(s’)rs/ ds’.
c' c

6) It does not depend on coordinates on Riemannian man-
ifold M, that is

Claa = [ elewrm ds = [ faTeor as
M g 8 g 8

7) The sum rule of integral also shows the additivity of |C].
As basic properties of a Riemannian manifold, the proof
of these three last properties is omitted. The readers are
referred to [74] for further discussions.
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Though the shortest distance is provided by the following
local e3’s, the geodesic to realize such distance does not nec-
essarily exist due to physical constraints in E3 space, e.g.,
the robot cannot tele-transport. Therefore, we need to define a
numeric solution to generate the feasible optimal path, which
best realizes the proposed concept. To this end, we adopt the
k-nearest-neighbor (k-NN) concept which is mostly applied
in manifold learning methods such as Isomap [75]. The pro-
jected weights can then be evaluated in a projected space
onto the plane supported by é; and 3, which are direction
vectors in 3. In the next section, we introduce the typical
trajectory planning for a mobile robot on a point cloud-based
representation.

VI. RECIPE FOR POINT CLOUD-BASED
TRAJECTORY PLANNING

A. Graph Construction and Distance Mapping

Planning in robotics is ubiquitous with various
representations [76]. The proposed representation is based
on the resulted tensor field from TVE. A typical application
using the proposed model is the trajectory planning on point
clouds. However, the closed form of planning using the given
metric is mathematically intractable. Utilizing the fact that the
local geodesic is along the direction of local €3, we propose
an accessible approximation as shown in Algorithm 1, which
equivalently maintains the major properties of (4).

Considering that g(s) is built in canonical form, following
the discussion in Section IV-C, the optimal direction is along
the direction of e3. By using (7), the Euclidean distance is used
in this case. Furthermore, weights among sites are defined in
a way, such that the diversity between the directions of the
path and e3 is exponentially punished.

B. Pipeline

As a summary, the pipeline of point cloud based robotic
planning is as shown in Fig. 3. We first process the raw point
cloud by TVFE. Then Riemannian embedding maps the points
from E3 to T, space, by which the local structural information
is coded. The geodesic measurement, mapped in Algorithm 1,
is used by target applications such as path planning.
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Algorithm 1 Algorithm of Trajectory Planning on Point Cloud

1  Create kNN graph G(V, D), where the nodes are
positions of points s; € E3

2 The edges D is calculated by embedding of
Riemannian metric in Euclidean space, using the
fact that a direction along &3 is preferred. For site
s; and its neighbor s{ , distance d; is defined as:

.TA
1—- tij e3;

e

di::

.S
,  where tl.J= — (7)

J
5 —S;

J
i —Si
1

3 For each query that consists of a pair of start-
ing and ending points, Dijkstra [41] search is
implement on G(V, D).

C. Metrics for Evaluation

To validate or compare various algorithms for trajectory

planning, the following metrics can potentially be used.

1) Number of Site Visits: It indicates the number of interme-
diate points along the path. It can also be interpreted as
the shortest distance by considering all weights among
sites are unity.

2) Length of Trajectory: The accumulated Euclidean dis-
tance of the calculated path.

3) Mean Curvature (MC): It is the average of the principal
curvatures at a point, i.e., MC = (k1 + «2/2). It reflects
to which extent the local neighborhood can be consid-
ered as a minimal surface. Intuitively, it represents the
local flatness. The smaller mean of MC along the path
indicates that the path lies on a flatter terrain.

4) Gaussian Curvature (GC): It is the product of the
two principal curvatures at a point, i.e., GC = k«k».
Formally, it depends only on the Riemannian metric of
the surface. It represents the local shape changes. The
smaller mean of GC suggests less local shake along
the path.

For practical cases, MC and GC are important for mobile

robots, especially for the planning of a rational path, as
described in the introduction.

VII. SIMULATION

In this section, we evaluate three related methods on simu-
lated dataset. Each simulated point cloud is uniformly sampled
from a parametric surface. The three methods are all based on
k-NN graph of point sites, but with different weight defini-
tions among point sites. Specifically, the following methods
are compared.

1) k-NN Search: The weights are set to unity. The optimal
path is the one with the minimum number of visited
points.

2) Shortest Euclidean Geodesic: The weights are set to
Euclidean distance. The optimal path is the one with
the smallest accumulated Euclidean distance.

3) Proposed Method (Algorithm I): The weights are derived
from (7), representing the optimal curve length of (7)

IEEE TRANSACTIONS ON CYBERNETICS, VOL. 46, NO. 5, MAY 2016

(b)

Fig. 8. Result of trajectory planning on a unit sphere using sampled point
cloud (k-NN = 10). Please note that the right image depicts the calcu-
lated trajectories overlaid on the raw surface only for visualization. The
surface information is not used in this paper. (a) Raw 4000 points uni-
formly sampled from a sphere. (b) Generated path for various methods. Green:
nearest-neighbor search (2.65); red: shortest Euclidean geodesic (2.44); white:
proposed method (2.54); cyan: great-circle distance (2.41). The numbers in
parentheses indicate the total length of the path.

constrained in 3. The optimal path is a rational path,
which is with the least curvature change, and tends to
obey the motion on a plane at the same time.

A. Sphere Dataset

A sphere dataset is used to show basic behaviors of different
methods on typical minimal surfaces. The point cloud is sam-
pled from a unit sphere as shown in Fig. 8(a). The resulting
trajectories are shown in Fig. 8(b).

We can see that the trajectories mostly fulfill the great-circle
distance, except the green one. It shows that the regarding
methods reasonably approximate the geodesic distance on typ-
ical minimal surface. We can also notice that the trajectory
using the proposed method leads to minor zig-zag behav-
iors. It is mainly because the sampling from the surface is
not perfectly uniform, and local nonuniformity leads to poor
performance of TVF [60]. It can be improved by normalized
dense voting on uniform sites or use denser sample points.

B. Complex Surface

1) Representations of the Surface: In order to validate
the proposed method in a more general case, we evalu-
ate the related methods on the point cloud as shown in
Fig. 9. It is sampled from a latent surface, which is arbitrarily
defined as

=m0 (5] 2 )

o ([Z] 8 ) ([0 ]2 5]2)

where N (u, C) defines a Gaussian kernel located at p with
covariance matrix C. The advantage of a parametric surface
is that GC and MC can be easily derived. The details for
calculation are omitted in this paper. The readers are referred
to [72] for hints.

2) Rational Path Planning: Inspired by the definition of a
metric tensor, we consider the trace of the Riemannian met-
ric g as the local measure of feasibility for a rational path.
Greater trace of g implies a longer incremental curve length,
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Fig. 9. 4000 points sampled from the surface defined by (8). Here, we use
a ten-nearest neighbor density-filter for point sampling.

(b)

Fig. 10. Simulation with complex surface. (a) Trace of the proposed
Riemannian metric. It indicates the roughness of the estimated neighborhood
surface, highlighted by color. (b) Generated path for different methods. Green:
nearest-neighbor search (21.42); red: shortest Euclidean geodesic (20.41);
white: proposed method (21.90). The numbers in parentheses indicate the
total length of the path.

which further induces more divergence of surface orientation
and curvature. Fig. 10(a) shows the trace of local metric tensor.

The primary observation is that the proposed method (in
white) leads to flat trajectory by actively avoiding the bumps
in reasonable fashion, though with relatively longer path.
A summary of the variations in z (elevation) direction along
the path is shown in Fig. 11. It can be inferred that the
proposed trajectory requires less adaptation to the terrain,
which leads to easier motion or morphological planning for
the mobile robot. Regarding the energy consumption, it can
also benefit from the less variation in elevation as well.

3) Validation by the Direction of €3: The property of the
proposed method in Algorithm 1 is supposed to optimize the
path by the following local e3 direction as much as possi-
ble. It is because e3 directs the direction of local geodesic,
which leads to the most terrain similarity. A qualitative result
is shown in Fig. 12. The €3; directions are represented by short
lines, and the color definition of paths follows in Fig. 10(b).
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Fig. 11. Height variation along the path for different methods.

Fig. 12.
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Fig. 13. Boxplot to show the divergence to é3; directions along the path.

The yellow trajectory calculated in Algorithm 1 mostly fol-
lows the short lines. A quantitative comparison is depicted in
Fig. 13. It shows the statistics of the absolute cosine values of
the path separation angle to local &3 along the path. A higher
value indicates the direction is more similar to €3. It indicates
that the proposed method fulfills the most coincidence aligning
with the vector field of e3.

4) Curvature Statistics: Recalling the metrics defined in
Section V-C, the comparison of curvature dynamics is shown
in Table II, where the outperforming value is highlighted by
gray background. Despite of the longer traveled length, the
proposed method holds the minimum MC and GC, as they
are the main goal of the design.
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TABLE 1T
STATISTICS OF THE TEST RUN. MC INDICATES MC;
GC INDICATES GC

Method k-NN Shortest Euclidean  Proposed
# Nodes 39 43 47
Length 2142 20.41 21.90
mean MC 0.0946 0.0853 0.0578
std-dev MC  0.1208 0.0989 0.0636
mean GC -0.0249 -0.0254 -0.0089
std-dev GC 0.0246 0.0232 0.0116
+
0.06f + 3
I
@ i
£ 0.04f ’
’ :
5 002 T - ¥
g : : -
K of
g -0.021 ‘ |
§ | : .
_0.04f . i
+ + +
-0.06 k-NN Shortest Euclidean Proposed

Fig. 14.  Boxplot of mean GC of 200 times simulation.

(b)

Fig. 15. Estimated normal for a typical apartment environment, 63.9 K
points, taking 645 ms, 0 = 0.2 m, considering mean 275 neighbors’ votes.
(a) Overview of the area. (b) Estimated surface normal.

5) Multiple Tests: Using 200 pairs of starting and ending
points, multiple simulations are carried out. As part of the
results, Fig. 14 shows the mean of mean GC of all the tests.
The proposed method has smaller variance and absolute mean
of GC. It indicates that the generated path can reduce robot
shake during the maneuver.

VIII. TESTS ON REAL DATA
A. Qualitative Normal Estimation Results on Datasets

Several tests for normal estimation using the proposed
algorithm are carried out. We show the qualitative results

IEEE TRANSACTIONS ON CYBERNETICS, VOL. 46, NO. 5, MAY 2016

(b)

Fig. 16. Estimated normal for a typical outdoor field environment, 40.8 K
points, taking 337 ms, o = 1.0 m, considering mean 2113 neighbors’ votes.
(a) Overview of the area. (b) Estimated surface normal.

Elevatiol

Fig. 17. Calculated trajectories for various methods. Green: nearest-neighbor
search (24.7); red: shortest Euclidean geodesic (22.5); cyan: proposed
method (29.3). The numbers in parentheses indicate the total length.
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Fig. 18. Dynamics of height changes along the trajectory.

based on “apartment” and “mountain plain” from [77] in
Figs. 15 and 16, respectively.

B. Test on the Planning Algorithm

As a sample of use case, we utilize one of the dataset intro-
duced by [78] for the test on real data. The scenario is shown
in Fig. 16(a). Please notice that the yellow eclipse marks
a fire-weed area, which may cause trouble for the robot to
traverse.

In order to reduce the cost of planning, we sample 10 K
points out of the raw point cloud (around 504 K points).
Adopting the GPU implementation of TVF introduced in [79],
the computation time for sparse voting is 24.79 ms. Based on
Algorithm 1, the calculated path is shown in Fig. 17. The
corresponding height changes are depicted in Fig. 18. It can
be observed that the cyan trajectory, by the proposed method,
actively avoids the fire-weed area, leading to a more rational
path for the mobile robot.
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The estimation of curvatures on point cloud is a subtle prob-
lem. The readers are referred to [80] for curvature estimation
by TVE. The evaluation in terms of GC and MC for real data
is omitted in this paper due to missing ground truth.

IX. CONCLUSION

In this paper, a GPU implementation of TVF for
3-D point cloud was first introduced. It enables the
structure analysis based on tensor voting to be fea-
sible in real time. The whole library was available
online, with robotic operation system (Www.ros.org), at:
https://sites.google.com/site/mingliurobot. The test dataset is
available at: http://projects.asl.ethz.ch/datasets. Based on that,
we introduced a Riemannian metric for the representation of
point cloud, which helps the modeling of the environment,
especially aiding the path planning for mobile robots directly
on raw point cloud. Geometrical properties of the proposed
metric tensor are discussed, which provide hints for further
research related to the modeling problems using raw point
clouds. The proposed framework was validated by path plan-
ning task on point clouds, using both simulated data and real
dataset. The results showed that the proposed method is able
to calculate rational paths for the robots, which facilitate the
robotic navigation. Since the TVF is a generic representa-
tion of a 3-D environment, we plan to use this representation
for further applications such as multirobot exploration and
planning.
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