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Abstract—Multi-LRF(Laser Range Finder) systems have been
broadly utilized in sensor fusion for automobile. In order to
convert multiple LRF data into a unified coordinate system,
we have to obtain the rigid transformation among multi-LRF.
In this paper, we propose a new algorithm for online extrinsic
calibration of multi-LRFs by observing a planar checkerboard
pattern and solving for transformation between the views of a
planar checkerboard from a camera and multi-LRF. Existing
LRF calibration is achieved by freely moving a checkerboard
pattern and conducting much offline optimization. Compared
with traditional algorithm, the advantages of our approach are
twofold. Firstly, adopting the noise of images and LRF depth
readings, we can exactly calculate the exact position and pose
of the checkerboard that can largely reduce the transformation
error. Secondly, the complete calibration process is online, which
means the exact position and pose of the checkerboard can be
obtained in real-time and manipulated by robotic arm. In the end,
our calibration approach is validated through real experiments
that show the superiority with respect to the state-of-art methods.

I. INTRODUCTION

With development of autonomous driving technology, multi-

LRF play an important role in object classification [1], pedes-

trian detection [2], city construction [3]. In all these cases,

the fusion of multi-LRF requires the knowledge of the relative

pose for projecting the depth readings into the same coordinate

system. Our paper addresses this extrinsic calibration problem.

A. Related Work

One of the most common techniques to solve the extrinsic

calibration problem is to use a checkerboard pattern and

a monocular camera to find the corresponding point-cloud

among multi-LRF [4]–[6]. Therefore, the alignment between

camera and LRF has to be accurately calibrated first. A

number of published works for the extrinsic calibration of

camera and LRF are to directly find the corresponding features

between images and point-cloud. The basic idea of Li [4]

and Wasielewski’s [5] approach is to use constraints obtained

from intensity edges on the image and point-cloud lying at

the depth edges to optimize the transformation matrix between

camera and LRF. The features are abstracted from the point-

cloud that is extracted by the depth edges or 3D corners

and intensity edges for the calibration target. The extrinsic

calibration parameters can be obtained by minimizing the

distances between the projected features. However, it is so

Fig. 1: Geometric model with multi-LRF and camera(Blue and

green area represent camera viewing angle and LRF scanning

range. The pose and position of green checkerboard armed

with robotic manipulator represent the result of our proposed

algorithm)

difficult to find such correspondences, because the LRF range

is typically outside the visual spectrum. Moreover, certain

types of features, like intensity edges, can only be detected

in one sensor modality.

B. Contribution

Our approach is similar to the work of Zhang and Pless [6].

Zhang’s method was achieved by freely moving a checker-

board in front of camera and LRF and computed the pose of

checkerboard from plane-to-image homographies. Given the

pose of a calibration checkerboard, the extrinsic calibration

parameters are estimated by solving a nonlinear optimization

problem which is established with a set of linear constraints

among camera coordinates of the checkerboard and its related

depth readings. We implemented Zhang and Pless’s algo-

rithm and found that the algorithm cannot provide sufficiently

accurate results. Zhang’s approach is not accurate due to

Levenberg-Marquardt optimization method [7]–[9] where the

accuracy heavily relies on the initial guess of transformation

matrix Φ and the relative position of a camera with respect to

the LRF reference frame Δ. Even though initial guess Φ and Δ
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for each pose of the checkerboard can be solved by standard

linear least square optimization, it is difficult to distinguish

which position and pose of checkerboard can lead to the

global minimum. Moreover, since all of raw data is achieved

by freely moving a checkerboard on different kind of pose

and position, it naturally suffers from intensity variations, the

narrow fields of view, and the low-accuracy depth information.

The proposed algorithm outperforms previous methods in three

ways. Firstly, we design the cost function that is based on

the position of LRF point-cloud with respect to the camera’s

coordinate of checkerboard. The error of cost function results

from the noise of image and LRF depth-readings for each

pose and position of checkerboard. Secondly, according to the

distribution of noise, we calculate the exact position and pose

of checkerboard for next step, which can largely reduce the

cost and transformation error. Finally, the complete procedure

is online. Fig. 1 provides a general setup of this calibration

method.

C. Organization

The paper is organized as follows: Section II introduces

the basic equation associated with geometric constraint and

proposed estimation model on the rigid transformation from a

camera coordinate system to LRF coordinate system. Section

III gives extrinsic calibration parameter estimation method.

Firstly, we use a Monte Carlo method to calculate noise

distribution under the proposed cost function. Secondly, we

apply a Gaussian Mixture Model to cluster the noise and

Principal Component Analysis the noisy cluster. Ultimately,

the Policy Gradient Descent Learning optimization method is

proposed to obtain refined pose and position of checkerboard.

Section IV we draw a conclusion by giving the experimental

result.

II. BASIC GEOMETRIC CONCEPT

For sensor fusion between a multi-LRF and a camera, both

the extrinsic and intrinsic parameters have to be estimated.

The intrinsic parameter of a camera (e.g. focal length, optical

center, pixel aspect ratio and skew parameters) can be esti-

mated using the Matlab Camera Calibration Toolbox [10]. A

projection from the world coordinates P = [X,Y, Z]
T

to the

image coordinates p = [u, v]
T

can be represented as follows

[11]:

p ∼ K(RP + t) (1)

K is the camera intrinsic matrix. R is a 3 × 3 orthonormal

matrix representing the camera’s orientation. t is a 3-vector

representing camera coordinates under world coordinate sys-

tem.

According to the derivation of Zhang’s method [6], an LRF

coordinate system can be defined with an origin at the LRF,

and the LRF scan plane is the plane Y = 0 in the LRF coordi-

nate system. X-Y-Z axes in LRF coordinate system are defined

as forward, downward and leftward respectively, while X-Y-

Z axes in camera coordinate system are defined as upward,

rightward and backward respectively. The checkerboard is the

checkerboard

world corrdinate t

N

laser coordinate
Xw

Yw

Zw

Xc

Zc

Yc

Za

Xa

Ya

camera coordinate

laser point

Fig. 2: Geometric interpretation of the camera coordinate, LRF

coordinate, and checkerboard plane

plane Z = 0 in the world coordinate system. In the camera

coordinate system, the checkerboard can be represented by a

3-vector N which is parallel to the normal of the checkerboard.

N ’s magnitude can be calculated by the distance from camera

to the calibration plane.

N = −R3(R
T
3 · t) (2)

where R3 is the 3rd column of rotation matrix R.

Given a LRF point P l, we can determine its coordinate P c

in the camera coordinate system as :

P l = ΦP c +Δ (3)

where Φ is a 3 × 3 orthonormal matrix representing the

camera’s orientation relative to the LRF and Δ is a 3-vector

corresponding to camera position under the LRF coordinate

system.

Because P c is determined by N in the calibration plane,

we can derive that:

N · P c = ‖N‖2 (4)

Using (3) and (4), the geometric constraint of extrinsic cali-

bration parameters between camera and LRF is described as

Fig . 2 and can be concluded:

N · Φ−1(P l −Δ) = ‖N‖2 (5)

where the transformation matrix Φ can be parametrized as a

3-vector parameter k according to the Rodrigues formula [12]:

Φ = I + (sin θ)K + (1− cos θ)K2 (6)

where K is defined by:

K =

⎡
⎣ 0 −k3 k2

k3 0 −k1
−k2 k1 0

⎤
⎦ (7)
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III. EXTRINSIC CALIBRATION ALGORITHM

A. Monte Carlo algorithm with Gaussian Mixture Model

Given every LRF point-cloud j from data-set i and the

pose of checkerboard Ni, we can define the error function

G(Φ,Δ)by using (5):

G(Φ,Δ) =
∑
i

∑
j

(Ni · (Φ−1(P l
ij −Δ))− ‖Ni‖2)2 (8)

In general, noises exist in the output of camera and LRF, which

have a great effect on the accuracy of extrinsic calibration

parameters. We develop an online robust method to simulate

the noise distribution. Firstly, there are six degrees of freedom

in Φ and Δ from our predefined error function (6). Assuming

these six variables are initialized uniform distributed, we prac-

tically assign different intervals (ai, bi) for different degrees of

freedom with respect to different sensor setups. Suppose xi is

one degree of freedom, therefore:

xi ∼ U(ai, bi) (9)

We use Gaussian Mixture Model [13] to cluster the values of

error functions and generate a new probability density function

after the first Monte Carlo integration [14] G(xi). To begin

with, the following errors are computed.

q(x) =
M∑

m=1

πm(N)(x|μm,Σm) (10)

where πm is the parameter of distribution of observation

associated with cluster m. μm is the mean value of cluster

m. Σm is the covariance matrix of cluster m. Given the value

of error function, we initialize μm , Σm, πm. After that, we

evaluate the responsibilities by using the current parameter

values:

γ(zim) =
πm(N)(xi|μm,Σm)∑M
j=1 πj(N)(xi|μj ,Σj)

(11)

where γ(zim) can be viewed as the responsibility that cluster

m takes for explaining the observation xi. The next step is to

use current responsibilities to re-estimate the parameters:

μnew
m =

1

Qm

6∑
i=1

γzimxi (12)

Σnew
m =

1

Qm

6∑
i=1

γzim(xi − μnew
m )(xi − μnew

m )T (13)

πnew
m =

Qm

Q
(14)

where

Qm =
6∑

i=1

γ(zim) (15)

Lastly, we evaluate the log likelihood and check for the

convergence.

ln q(x|μ,Σ, π) =
6∑

i=1

ln

{
M∑

m=1

πm(N)(xi|μm,Σm)

}
(16)

When the log likelihood meets the convergence criterion, we

use the new probability density function q(x) to draw the

samples. This method is referred as Importance Sampling [15].

Suppose probability density function of previous Monte Carlo

Integration is p(x). Hence:

E[G(xi)] =

∫ ai

bi

G(xi)p(xi)dx

=

∫ ai

bi

G(xi)p(xi)q(xi)

q(xi)
dx

= E

[
G(xi)p(xi)

q(xi)

] (17)

By generating n samples xi ∼ q(x), the new Monte Carlo

estimator becomes:

I =
1

n

n∑
j=1

G(xij)p(xij)

q(xij)

=
1

n

n∑
j=1

W (xij)G(xij)

(18)

where W (xij) =
p(xij)
q(xij)

are the importance weights. We

manually set up two criterion. Firstly, when the importance

weight Wij < δ, our algorithm reject the sample value.

Secondly, when variance of new Monte Carlo Integration is

under one certain value ξ, we end up the algorithm and use

GMM to pick up the most noisy cluster. A summary of Monte

Carlo algorithm with Gaussian Mixture Model (MC-GMM) is

as follows.

Algorithm 1 Monte Carlo algorithm with Gaussian Mixture

Model (MC-GMM)

1: Initialize xi ∼ U(ai, bi)
2: while V arq[G(xij)] ≤ ξ do
3: GMM cluster until convergence � new pdf q(x)
4: Importance Sampling � using q(x) for re-sampling

5: if Wij ≤ δ then
6: reject sampling value

7: end if
8: end while

B. Policy Gradient Descent Learning with Principal Compo-
nent Analysis

In order to speed up for finding the minimum value of

our predefined error function, we need to analyze the noise

distribution. To eliminate the noise from Φ and Δ (totally 6

degree of freedom), we apply Principal Component Analysis

to find out the first principle component of the noisy cluster.

First of all, according to Monte Carlo simulation result with

a Gaussian Mixture Model, we can pick up the most noisy

cluster and apply PCA [16] to calculate the largest eigenvalue.

Besides, we use Policy Gradient Descent [17] to find out which

pose and position of the checkerboard can largely reduce the

first component of the noisy cluster. There are also six degrees

of freedom for checkerboard. Suppose Bx, By , Bz , Bα, Bβ ,
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Bγ are the poses and positions of checkerboard in the world

frame. Assuming the policy parametrization is varied S times

by small increments ΔBis, our goal of the policy optimization

is to optimize ΔBis. Hence, our optimization cost function J
is :

J(Bis +ΔBis) = λ(Bis +ΔBis) (19)

where Bis represent ith degree of freedom of checkerboard in

the s iteration time, λ is the first component of corresponding

noise cluster.

The policy parameter evolution, i.e. Bis + ΔBis, is per-

formed, such that:

ΔJ = J(Bis +ΔBis)− Jref (20)

Jref = J(Bis −ΔBis) (21)

Using (20) and (21), we can derive the gradient as :

gradB = (ΔBT
s ΔBs)

−1ΔBT
s ΔJ (22)

In the last, update the pose of checkerboard by using

gradient:

Bi(s+1) = Bis − εgradB (23)

where ε is the value of step size. When the optimization

function is converged(e.g ΔJ is under one certain value ε),

we can acquire final result for the pose and position of

checkerboard and the rotation matrix between camera and

LRF Φ, camera position w.r.t LRF coordinate system Δ.

The estimation matrix Φ can find the nearest orthonormal

matrix ΦR to represent the rotation matrix, which is subject to

ΦT
RΦR = I . ΦR can be calculated by using Frobenium norm

[18]. The final rotation matrix can be derived as :

ΦR = Φ(ΦTΦ)−
1
2 (24)

Suppose there are two LRFs and one camera in our sensor

setup. Φ1 and Φ2 represent the corresponding rotation matrices

between the corresponding LRF and camera. So the rotation

matrix between these two LRF is :

Φ2
1 = Φ2Φ

−1
1 (25)

Summary of Policy Gradient Descent with Principal Com-

ponent Analysis is described as following:

Algorithm 2 Policy Gradient Descent Learning with Principal

Component Analysis(PGDL-PCA)

1: Initialize policy parametrization Bi

2: while ΔJ ≤ ε do
3: generate policy variation ΔBi

4: generate most noisy cluster by MC-GMM(Bi +ΔBi)

5: estimate Ji = J(Bi +ΔBi) by PCA

6: generate most noisy cluster by MC-GMM(Bi−ΔBi)

7: estimate Jref = J(Bi −ΔBi) by PCA

8: compute ΔJi = Ji − Jref
9: update parameter Bi

10: end while
11: return Bi, Δ, Φ
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Fig. 3: Variation of color represents number of iterative

optimization step

iteration Bx By Bz Bα Bβ Bγ J(B +ΔB)
1 1.7m 1.2m 0.3m 0.51rad 0.46rad 0.42rad 7.2
2 1.8m 1.3m 0.4m 0.61rad 0.56rad 0.52rad 5.6
3 2.8m 2.3m 1.4m 1.61rad 1.56rad 1.52rad 0.98
4 3.2m 2.7m 1.8m 2.01rad 1.96rad 1.92rad 0.2

TABLE I: Value of optimized function J results from number

of iterative optimization step

IV. EXPERIMENTAL RESULTS

A. Experiments with Simulated data

Simulated data provide us series of scenarios with controlled

environment to study effects of noise on the estimation model.

The estimated parameters are compared with the ground truth

in order to measure the estimation errors. The simulations of

our experimental setup are conducted to analyze the estimated

parameter errors of our proposed method and that of Zhang’s

method [6].

In this experiment, we set up two Ibeo LRFs, two monocular

cameras and conduct the simulation in Gazebo. The resolution

of the IP camera is 1280 × 960. There are 4 LRF layers for

an Ibeo LRF. The separation angle of each layer is 0.08◦.
The angle increment rad for each layer is 0.05◦. From our

test, we take the 4th layer LRF point cloud as input. Our

calibration pattern plane is a checkerboard defined by 10×10
grids. The size of the pattern square is 150mm×150mm. The

LRF and the camera are stationary, such that there is always

a significant overlap between the field-of-views of two Ibeo

LRFs. The checkerboard placement guarantees the intersection

with multiple LRF scan plane.

The estimated extrinsic parameters Φ and Δ are compared

with the ground truth ΦGT and ΔGT . The accuracy of ro-

tation matrix is quantified by the angular magnitude of the

residual rotation ΦTΦGT and by the relative translation error

‖Δ−ΔGT ‖ / ‖ΔGT ‖.
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Fig. 4: (a) and (b) represent the estimation error of the rotation matrices Φ and Δ, with respect to the number of iteration.

(c) and (d) represent the mean error and variance of the reprojection of LRF point-cloud into image coordinate system, with

respect to the number of iteration. (e) and (f) represent the projection of right and left LRF into the images using the extrinsic

calibration results obtained from 5 samples with our algorithm(circles) and Zhang’s algorithm(triangles)
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Fig. 3 and Table I show that the first component of the

noisy cluster is largely reduced within 4 iteration and meet

the convergence criterion. The aim of our algorithm is to find

out the exact pose and position of the checkerboard which can

largely reduce the estimation error. The accuracy of extrinsic

parameters can be improved at each iteration, unlike that with

free motion of the checkerboard.

B. Comparison with Zhang’s method

For the sake of fairness, Zhang’s method is practically im-

plemented by using a hypothesize-and-test framework which

is described as [6]. The experiment considers number of

calibration planes and runs 100 calibration trials and compares

the error distribution. Gaussian noise with mean 0 and standard

deviation 0.5 pixel is added to the projected image.

From analysis of Fig. 4(a) and Fig. 4(b), our algorithm

significantly decreases the chances of divergence during the

iterative optimization step. Our calibration results has con-

verged at the 4th iteration, while Zhang’s method converge

very slowly, e.g. per our test, Zhang’s result cannot converge

at the 9th iteration. Moreover, since the checkerboard motion is

unconstrained, Zhang’s method discards the existence of fewer

images with LRF readings which can not fulfill the geometric

constraint. For example, when checkerboard is holding in

certain pose that is parallel to the LRF scan plane or cannot

receive LRF depth readings, this one is an invalid pose. We

have to manually construct a current valid pose set for Zhang’s

method, while there is no offline labor work for our solution in

terms of valid pose set construction. For the nine-iteration test

case, an exhaustive search of Zhang’s solution space requires

88 trials. Further improvement of our algorithm’s accuracy is

marginal by further iterative refinement.

C. Experiments with Real Data

Our proposed method was tested on a robotic platform

whose sensor setup is the same as those in the simulation

environment. Although we do not have the ground truth of the

extrinsic parameters Φ and Δ, the results from real data show

that our proposed method is well performed and yield reliable

calibration parameters. According to the characteristic of Ibeo

LRF, one certain layer of LRF point-cloud should fit on one

line. We use linear regression [19] to fit a straight line through

the set of 175 points(the maximum number of point-cloud

in one certain layer of Ibeo LRF) in such a way that makes

the mean error and variance as small as possible. Suppose

there are 175 point-cloud for each certain pose, e.g. per our

test, [Xi, Yi]
T

represents the projection of ith point-cloud into

image coordinate system. Ŷi represent the prediction value

estimated by linear regression with the corresponding Xi. The

accuracy can be quantified by mean error 1
175 (Ŷi − Yi) and

variance
∑175

i=1(Yi−Ȳ )2

175−1 . From analysis of Fig. 4(c) and Fig.

4(d), our algorithm significantly decrease the mean error and

variance during the iterative optimization step, while Zhang’s

algorithm hardly decrease the mean error and variation even

after 9 iteration. The calibration results are visualized as Fig.

4(e) and Fig. 4(f).

V. CONCLUSION

In this paper, we presented an online active calibration algo-

rithm for multi-LRF systems. In view of the noise distribution

of the input from camera and LRF, we can quickly determine

the exact pose and position of a checkerboard to obtain a high

accuracy of extrinsic calibration. The complete calibration

procedure is online which is of great convenience. Experiments

with real data proved the stability of the algorithm. The

proposed algorithm outperforms state-of-the-art algorithms in

terms of the less required number of checkerboard poses and

lower time-cost.
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