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Abstract—For mobile robots and position-based services,
localization is the most fundamental capability while path-
planning is an important application based on that. A novel
localization and path-planning solution based on a low-cost
Visible Light Communication (VLC) system for indoor environ-
ments is proposed in this paper. A number of modulated LED
lights are used as beacons to aid indoor localization additional
to illumination. A Gaussian Process (GP) is used to model
the intensity distributions of the light sources. Path-planning
is hereby feasible by using the GP variance field, rather than
using a metric map. Graph-based path-planners are introduced
to cope with the practical situations. We demonstrate our path-
planning system by real-time experiments performed on a tablet
PC in an indoor environment.

I. INTRODUCTION

A. Motivation

Precise localization is the fundamental capacity of many

robotic applications and scenarios such as service and rescue

robots. Also, localization information is one of the most

essential data shared in a cloud robotic system [1]. Taking

the visual approaches for example, FastSLAM has been

widely applied [2] for laser range-finder-based mapping and

path-planning. Efficient visual localization methods using

omnidirectional cameras were introduced in our previous

works [3], [4], [5], [6].

Based on the localization information, path-planning is a

specific application, as it enables a robot to get to a defined

goal position.

We propose to realize more robust and precise localization

and path-planning by using modulated visible light to provide

a stable global reference, where a cheap photonic diode is the

only required sensor. The possibility of achieving accurate

localization using such a system has been discussed in our

previous work[7]. It supplies a low-cost practical solution for

personal localization services, considering a photonic sensor

is common on most consumer electronic devices. As a key

to realize global localization, the details of codes selection

for light modulation and decomposition method have been

discussed in another previous work late last year [8].

The overall structure of the proposed approach is shown

in Fig. 1. The mixed modulated light signal is captured by

a photonic diode, which is decomposed using an ad-hoc
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blind signal decomposition algorithm. The signal intensity

of each light source is further used for both environment

modeling process and Bayesian filter-based localization. The

environment model is represented by the mean fields and

variance fields of the observed components. Using the real-

time localization result, path-planning could be thus realized

based on the variance fields.

B. Challenges and Contributions

There are several challenges in this work. Firstly, since we

do not use exteroceptive sensors except a low-cost photonic

diode, which is a sensor with scalar output, the environment

modeling is challenging, because no metric information is

readily available. Secondly, since we only have the obser-

vations from the photonic diode, precise localization is hard

to achieve considering various observation situations, such

as changed orientations of the sensor. Last, but not least,

adaptive real-time path-planning needs the indoor map to be

accurately constructed, which is usually a metric representa-

tion, which we do not have.

Despite these difficulties, the following contributions are

addressed in this paper:

• We realize a data-driven environment modeling scheme

based on Gaussian Process Regression using the scalar

output from a photonic diode, such that no prior knowl-

edge is required on the light distribution and indoor

circumstance arrangement.

• We propose a novel idea for path-planning on the

variance fields derived from the Gaussian Process. Real-

time heuristic path-planning is achieved based on a

projected cost-map from the variance field, which is

validated by experiments.

C. Organization

Section II of this paper introduces different localization

and path-planning solutions in the robotic areas, especially

those based on VLC. In section III, we briefly introduce

the construction of the VLC-based system and define the

environment modeling and path-planning problem, includ-

ing the I/O of the algorithm and application. Section IV

introduces the scheme and implementation of the Gaussian

Process-based environment modeling phase, followed by the

illustration of different implementations of the path-planning

algorithms using the former results of localization in Section

V. Different path-planning algorithms are compared in the
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path-planning section. Finally, we make a conclusion of our

work and envision future work.

Signal
Decomposition

Localization
Module

Localization
Module

Signal Modeling
Module

Position Data
from SLAM

  Signal
Distribution Map

of Each Light Source

Estimated
Postion

Modulated
Light-SignalGPR-Based

Sensor Modeling
Bayes Filter-Based

Localization

Target
Input

Path-planning
Module

Planned
Path

A* Path-Planning

Fig. 1. The overall structure of the proposed solution for indoor localization

II. RELATED WORK

A. Robotic Path-planning

The algorithms for path-planning have been well-studied,

since lots of scientific and engineering problems can be sum-

marized as finding an optimal path through a graph. Dijstra’s

algorithm is a widely used mathematical approach to find an

overall minimum cost path by establishing a directed graph

with cost defined between the connected nodes, which was

firstly proposed by Dijkstra [9]. The computation feasibility

is the first concern of this algorithm, although a prior queue

may be adopted to reduce the computation complexity. A set

of algorithms could be used to help improve the computation

efficiency in the graph search process, such as heuristic

methods. Hart introduced A* [10] to combine the information

from a specific routing domain to realize a fast solution

of path-planning. Modified versions of these basic methods

have been widely applied [11], [12]. In this work, these

existing path-planning algorithms will be compared using the

localization result based on a Gaussian Process Regression

model. The aforementioned algorithms perform re-planning

at every single iteration, which is based on the fact that the

environment model is completely constructed before the path

is computed. In order to meet the need in partially known

environments, D* [13], focused D* [14], and D*-Lite [15]

were proposed. Colas et al. implemented the D*-Lite-based

3D path-planning on a multi-terrain robot for search and

rescue missions [11]. Online path-planning on point-cloud

was realized by Ming Liu on a local Riemannian metric based

on the saliency components of tensor voting results [16].

B. Visible Light Communication (VLC)

VLC is a type of wireless communication technique, which

makes use of visible light as the transmission medium of

information. A key advantage of VLC is that it can be

simultaneously used for illumination and communication.

XW Ng et al. proposed a medical healthcare information

system based on VLC, mainly considering the disturbance

of electromagnetic waves to medical instruments [17]. Also,

VLC could be used as a communication channel for au-

tonomous control and remote manipulation [18], [19].

VLC-based positioning systems have also been discussed

in literature [20]. However, most of these systems require

several types of sensors to work together, such as the high-

accuracy positioning system based on VLC proposed by

M. Yoshino et al. [21], [22]. Although the system could

measure both the position and direction of a receiver, it

requires additional image processing procedures which would

increase cost and time consumption. Kim et al. tried to

overcome this disadvantage by using an intensity modula-

tion/direct detection and radio frequency carrier allocation

method [23], but the transmission channel consumption is

relatively high in this case. Besides this, all of these methods

require geometrical computation, rather than sensor data-

driven modeling which has been proved to be sufficient for

precise localization in our previous work [7].

III. PROBLEM DEFINITION

A typical setup is described as follows: in an indoor

environment, several modulated LED tubes are distributed

arbitrarily. Each LED has a unique modulation waveform,

which is carefully selected to ensure high auto-correlation

and low cross-correlation responses between every two tubes.

Our demo VLC system is based on the previously proposed

hardware as shown in Fig. 2 [7]. It emits white visible light
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Fig. 2. VLC light sources used in this paper

using LEDs at a high frequency. A typical test environment

using the hardware system is shown in Fig. 3, which replaces

the original illuminant condition.

To get the light intensity vectors which describe the inten-

sities of the components embedded in the received signal, a

blind signal decomposition process is applied. Based on the

known sensor locations and corresponding intensity vectors,

the environment model could be represented as a set of

intensity distribution maps in the test area aided by Gaussian

Process. It results in two parts: the regression mean fields

and the variance fields. The former represent the expected

light signal observations; the latter represent the observation

likelihoods.

In this paper, we mainly consider the path-planning module

in the context of the VLC-based system. The objective of

path-planning is to generate an optimal path in the map
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Fig. 3. A typical setup for the light sources of the VLC system

from the start position to a valid goal position. In order

to use heuristic search algorithms, we have to convert the

GP fields into structured cost-maps which contain nodes

and arcs. Here we construct the cost-maps directly on the

variance fields rather than on the maps generated by the

mobile robot. An advantage is that an accurate map is no

more a prerequisite for path-planning, which significantly

reduces the requirements on map construction. Taking a

position derived from the localization module, we label a

destination on the map. By using path-planning methods,

such as Dijkstra’s algorithm and A* algorithm, we aim to

find the optimal path with the minimum total cost based on

the cost-map.

IV. ENVIRONMENT MODELING

The VLC-based localization system mainly consists of

two technical parts: Gaussian Process-based Modeling and

Bayesian Filter-based localization. Since our path-planning

solution is based on the variance field, which is part of

the output of the modeling phase, we mainly discuss the

environment modeling part in this paper.

To utilize the signal decomposition results, we need to

model the luminous distribution of a certain room so that the

specific location of each LED beacon is no longer needed

once the indoor environment is determined, in other words,

the localization works in a data-driven mode. Therefore, a

data collection process is a prerequisite, which should be

carefully arranged and cover all the possible operating area

since the accurate localization and path-planning are only

possible where the sensor has been in the data collection

phase. After that, a Gaussian Process Regression model is

applied to construct an environment model based on the

decomposition results at different positions.

As for the Gaussian Process model, we follow the function-

space definition described by Rasmussen [24]. Let D =
(x1, y1), (x2, y2), ..., (xn, yn) be a set of training samples

drawn from a noisy process

yi = f(xi) + ε (1)

where each xi is an input sample in R
d and each yi is an

observation result in R. ε is zero mean, additive Gaussian

noise with known covariance σ2

n. In practice, xi denotes the

2D position and yi denotes a component of the received

signal. For notational convenience, we aggregate the n input

vectors xi into a d × n matrix X, and the target values

yi into the vector denoted y. A Gaussian Process estimates

posterior distributions over functions f from training data

D. These distributions are represented non-parametrically by

using training samples. The key idea underlying GPs is the

requirement that the function values at different positions

are correlated, where the covariance between two function

values, f(xp) and f(xq) are dependent on the input values

xp,xq . This dependency can be specified via an arbitrary

covariance function, or so-called kernel k(xp, xq). The choice

of the kernel function is typically left to the user, the most

widely used being the squared exponential, or Gaussian

kernel:

k(xp, xq) = σ2

fexp(− 1

2l2
)|xp − xq|2 (2)

where σ2

f is the signal covariance and l is the length

scale that determines how strongly the correlation between

points maintains. Both parameters control the smoothness of

the functions estimated by a GP. The covariance between

function values decreases with the distance between their

corresponding input vales.

Since we do not have direct access to the function values

but only noisy observations, it is necessary to represent the

corresponding covariance function for noisy observations:

cov(yp, yq) = k(xp, xq) + σ2

nδpq (3)

where σ2

n is the Gaussian observation noise and δpq is one

if p = q and zero otherwise. For an entire set for input

values X , the covariance over the corresponding observation

y becomes

cov(y) = K + σ2

nI (4)

where K is the n ∗ n covariance matrix of the input values,

that is, K[p, q] = k(xp, xq).
Note that for any set of values X , one can generate the

matrix K and then sample a set of corresponding targets

y that have the desired covariance. The sampled values are

jointly Gaussian with y ∼ N(0,K + σ2

nI). Additionally, it is

the posterior distribution over functions given training data

X , y. From Eq. 2 it follows that the posterior over function

values is Gaussian with mean µ and covariance σ2:

p(f(x∗)|x∗, X, y) = N(f(x∗);µx∗ , σ
2

x∗
)

where
µx∗ = kT

∗
(K + σ2

nI)
−1y

σ2

x∗
= k(x∗, x∗)− kT

∗
(K + σ2

nI)
−1k∗

(5)

Here k∗ is an n-dimensional column vector, describing the

covariances between x∗ and the n training inputs X , and K
is the covariance matrix of the inputs X .

At the end of the modeling step, we get several intensity

distribution maps including the mean fields and the corre-

sponding variance fields, regarding each LED light source.

They supply the key references of the observation model for

Bayesian dynamic deduction. A pair of example results is
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shown in Fig. 4. The regression mean represents the expected

light signal observation; the variance field represents the

observation likelihood. The “shape” of the variance field

roughly represents the traversable areas, since the observa-

tions over these areas are with higher confidence and thus

low covariance values. For the same reason, the variance field

could directly used for path-planning which will be discussed

later.

(a) The mean field of light source 6 (b) The variance field of light
source 6

Fig. 4. A typical example of the Gaussian Process results

V. PATH-PLANNING ALGORITHM

The realization of path-planning depends on precise lo-

calization and map construction. Precise map construction

requires metric information provided by a SLAM system,

which is usually a costly way. While a metric-free solution

is proposed based on the previous environment modeling

results.

A. Cost Map Construction

First of all, we need to construct a cost-map including

nodes and arcs in the VLC environment. The map gen-

erated by the robot is naturally the first choice. However,

in general cases, the map calculated has a noisy boundary.

More importantly, it is coupled with dynamic objects in

the mapping process. This means a pre-denoising step is

needed. Comparatively, the variance field computed by the

Gaussian Process is a better choice since it naturally provides

references regarding the trust to the original data. A sample

variance field is shown in Fig. 6 (a). Besides this, it is

also applicable under other test conditions where laser range

finders may not even be available at all, e.g. the ground-truth

may be provided by a motion tracking system.

Specifically, the nodes represent the discrete locations in

the real world while the arcs denote the connection rela-

tionship between nodes. Usually the map is represented by

a pixel-based picture so every node has eight neighboring

nodes except the marginal ones, which is shown in Fig. 5

(a). There are two statuses of the nodes, ‘free’ for the nodes

located in the traversable area and ‘obstacle’ for the nodes

otherwise. The arcs here are directional, namely there are two

arcs between every two nodes. Each arc has an associated

cost value. A cost could be defined to be distance, energy

expended, time exposed to danger, etc. In our work, we

simply define the cost to be uniform in traversable areas

since isotropy is a reasonable assumption in the indoor

environment. Given the cost graph, the next step is to find

the minimum total cost path from the start node(S) to the

goal node(G) based on a search algorithm. In our demo, the

current position is obtained from the VLC-based localization

while the goal position is manually defined. A sampled path

is shown in Fig. 5 (b).

p

q
c

(a) nodes and arcs

S

n

G

(b) path generated by the search algorithm

Fig. 5. Cost graph and a sample path within an image-form map

We first apply a binarization step on the variance field.

Then, the planning is implemented using only the binary ver-

sion. A sample of the raw variance field and the binarization

results are shown in Fig. 6(a) and (b), respectively.

In practice, the suggested path ought not to hit on the

boundary of the obstacle considering collision volume. In

order to keep a safe distance from the obstacles, an expanding

process is applied to the obstacle area, which is shown in Fig.

6(c). Euclidean distance is used to construct the cost map for

free nodes, and positive infinity for obstacles. A sample path

on the variance field is shown in Fig. 6(d).

(a) Variance field (b) Binarization (c) Securing (d) Path

Fig. 6. Steps for path-planning

B. Algorithm

Dijkstra’s algorithm is a widely used graph-search method

to find the shortest path based on non-negative edge costs.

Compared with the Dijkstra’s algorithm, A* is a smarter

method integrated with an evaluation function ˆf(n) to de-

termine which node should be visited next. For any starting

node S and goal node G, f(n) is defined as the actual cost

of an optimal path which is constrained to go through node

n (refer to Fig. 5 (b)), it could be written as the sum of two

parts:

f(n) = g(n) + h(n)
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ˆh(n): 0(Dijkstra’s) (x+ y)/2
√

x2 + y2 max(x, y)−min(x, y) +
√
2 ∗min(x, y)

Length(m) 9.7456 9.7456 9.7456 9.7456
Time(ms) 23 34 22 26

Length(m) 10.671 10.671 10.671 10.671
Time(ms) 48 70 38 54

TABLE I
THE COMPARISON OF DIFFERENT ALGORITHMS

Algorithm for path-planning based on the variance field by GP

1. Variance field binarization and refinement
the ‘free’ and ‘obstacle’ areas are then determined

2. Cost map construction:
for each pair of neighboring node p and node q

a. if both p and q are located in ‘free’ area:
Cpq = |Apq |

b. else:
Cpq = + inf

3. Set p = S, the start point and calculate ˆf(p)
4. Expand p as follows:

if p == G, mark p CLOSED and end the algorithm
else mark p CLOSED and:

for each of p’s neighbors q that are not expanded

a.calculate f̂ for q

if ˆf(q) decreased, make q point back to p

b.mark q ACTIVE if q has never been visited or ˆf(q)
is smaller now than it was marked CLOSED

5. Set r = node with minimum evaluation function on the ACTIVE list:
6. Repeat Step 2 for p = r
7. Visualization

1 The Apq denotes the real distance between node p and node q.
TABLE II

PATH-PLANNING ALGORITHM

where g(n) is the cost of the best path so far from S to n,

and h(n) is the estimated cost of an optimal path from n to

G. In practice, we only need to know the estimation of f(n)
as the sum of the estimations of g(n) and h(n) is

ˆf(n) = ˆg(n) + ˆh(n)

The optimal choice of ˆg(n) is the cost of the path from S to

n, the minimal cost so far. The selection of ˆh(n) depends on

the physical information in the real problem. In this work,

it is defined as the distance from n to G in the variance

field. Actually ˆh(n) is the source of the heuristic factor

of the algorithm that ensures the algorithm always firstly

expands the most likely node in the shortest path. It has

been proved that A* is not only admissible but optimal if

the evaluation function ˆh(n) satisfies a certain requirement

[10]. Here ‘admissible’ means A* is guaranteed to find an

optimal path from a start node to a preferred goal node, and

‘optimal’ means the total cost of the expanded nodes in the

algorithm is minimized.

Dijkstra’s algorithm can be actually regarded as a partic-

ular case of the A* algorithm with the heuristic item h(n)
being constantly 0. Compared with the time complexity of

Dijkstra’s algorithm, A* seems to have an overwhelming

advantage, however, the optimal heuristic function is hard to

achieve and the complexity of the calculation of the heuristic

item usually is not a small expense. Thus we need to balance

the complexity and the heuristic effectiveness of ˆh(n) to

obtain a reasonable solution according to the application. The

overall path-planning algorithm on the variance field of the

GP model in the VLC-based system is shown in Table II.

The path planning function is realized on a tablet with a

photonic diode connected to the tablet through a USB sound

card. The user interface is shown in Fig. 7. The performance

is shown by the supplementary video.

Fig. 7. The Rviz-based user interface of the localization and path-planning
system

C. Validation and Experiment

In order to compare different path-planning algorithms, we

conducted experiments in the same indoor environment as

that for the localization test. Considering the admissibility

condition, we chose 0, (x+y)/2,
√

x2 + y2 for comparison,

in which 0 corresponds to the Dijkstra’s algorithm.
√

x2 + y2

corresponds to the most reasonable heuristic method since it

represents the direct distance in the 2D plane, the number

of the expanded nodes is minimized but the computation

complexity of each node is considerable. While (x + y)/2
will expand more nodes but the total computation complexity

may be reduced. Besides these three choices, we let ˆh(n) be

max(x, y)−min(x, y)+
√
2∗min(x, y) to further meet the

practical situation.

The map resolution is set to be 10 centimeters. We

use a fixed start point and the goal point to perform the

algorithm comparison (the debug mode). The comparison is

made on the map based on the variance field. As we can

see from Fig. 8, all the algorithms with different heuristic

items can compute paths from the start to the goal with

marginal differences. The quantitative results are shown in

Table I, in which ‘Length’ represents the length of the

generated path and ‘Time’ denotes the computation time

a certain search assignment needs, which reflects the total

computation efficiency. As we can see from the experiment
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data, all the alternatives can find a optimal path but
√

x2 + y2

has the most stable performance of all. The fourth choice

max(x, y) − min(x, y) +
√
2 ∗ min(x, y) is the graph

representation of the point-to-point distance
√

x2 + y2, thus

the path-planning result is quite similar with the Dijkstra’s.

The path-planning algorithm is then applied on a tablet

with the heuristic item
√

x2 + y2 to realize real-time path-

planning and re-planning. The real-time demo shows the

path-planning result is still acceptable even thought the

operating height and orientation are not stable(hand-held

case with acceptable orientation change). For further details,

please refer to the attached video.

Fig. 8. Sample path-planning results based on different heuristic items, the

corresponding values of ˆh(n) from left to right are 0, (x+y)/2,
√

x2 + y2

and max(x, y)−min(x, y) +
√
2 ∗min(x, y)

VI. CONCLUSION

In this paper, we proposed an environment modeling-

based metric-free path-planning solution using a VLC-based

system. We applied Gaussian Process Regression to solve

the environment modeling problem. We compared different

A* algorithms for path-planning through experiments on

the variance field that derived from the Gaussian Process

Regression. The results showed the accuracy and practicality

of our system, which tends to be a better solution for indoor

localization and path-planning with minor requirements on

hardware and computation, for both robotic applications and

personal positioning applications. In the future, we want to

further improve the accuracy and robustness of the system in

terms of the training method of the Gaussian Process.

VIDEO SUPPLEMENT

The attached video shows the real-time path-planning

results. Note that we mimic an environment of a big shopping

mall and demonstrate our indoor localization and path-

planning system on the tablet. Different regions in the map

are decorated with commercial brands to vividly demonstrate

the idea for indoor positioning-based services. The user is

moving in the test environment with a hand-held tablet.

The screen-shots of the path-planning results and two real

views are simultaneously presented. Note that the tablet can

potentially be replaced by other devices with photonic diodes,

e.g. most smart-phones with approximation sensors, etc.
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