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Topological Mapping and Scene Recognition With
Lightweight Color Descriptors for an

Omnidirectional Camera
Ming Liu, Student Member, IEEE, and Roland Siegwart, Fellow, IEEE

Abstract—Scene recognition problems for mobile robots have
been extensively studied. This is important for tasks such as visual
topological mapping. Usually, sophisticated key-point-based de-
scriptors are used, which can be computationally expensive. In this
paper, we describe a lightweight novel scene recognition method
using an adaptive descriptor, which is based on color features and
geometric information that are extracted from an uncalibrated
omnidirectional camera. The proposed method enables a mobile
robot to perform online registration of new scenes onto a topologi-
cal representation automatically and solve the localization problem
to topological regions simultaneously, all in real time. We adopt a
Dirichlet process mixture model (DPMM) to describe the online
inference process. It is based on an approximation of conditional
probabilities of the new measurements given incrementally esti-
mated reference models. It enables online inference speeds of up to
50 Hz for a normal CPU. We compare it with state-of-the-art key-
point descriptors and show the advantage of the proposed algo-
rithm in terms of performance and computational efficiency. A
real-world experiment is carried out with a mobile robot equipped
with an omnidirectional camera. Finally, we show the results on
extended datasets.

Index Terms—Graphic model, non-parametric learning, omni-
directional camera, scene recognition, topological segmentation.

I. INTRODUCTION

A. Motivation

IN this paper, we propose a lightweight descriptor for omni-
directional vision. It enables a mobile robot to incrementally

build a topological map that is based on image appearances and
localize itself at scenes simultaneously. Generally, a model of
the surrounding environment is needed for robotic missions.
Metric and topological maps are the two fundamental types of
environment representations. A metric map describes the sur-
rounding environment in a precise and measurable way, usually
by defining free and occupied space with occupancy grids [1] or
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a set of positions/poses of features [2], [3]. Usually, raw-range
sensor measurements are applied to construct such a precise
model. Although metric maps are able to incorporate redundant
information for precise mapping, they are typically not capable
of handling the data in an efficient way.

In order to efficiently represent the environment, topological
mapping is widely applied for several vision-based applica-
tions [4]–[6], since it contains sufficient information and ex-
cludes overly detailed metrics, which may be computationally
expensive.

Topological mapping and scene recognition techniques are
efficient ways to model an environment with sparse informa-
tion. It facilitates humans’ cognition and recognition of their
surroundings as well. When people describe where they are,
they normally use unique labels of the places such as “my of-
fice,” “the first part of the corridor,” etc.

According to the psychological research [7], region-based
topological structures are mostly used by humans when such
information is learned or recognized. It relies highly on their
ability to learn egocentric positions that are based on visual
hints. In most cases, the information that humans use is simple.
Several studies have shown that color information can affect the
perception of humans in terms of spatial dimensions [8] and
scene cognition [9], [10]. These intuitive observations can be
extended to similar tasks for mobile robots.

The ability to visually detect scene changes and recognize
existing places is essential to mobile robots. Moreover, since
robots may have multiple tasks at the same time, it is preferable
if these detection and recognition methods are online, which
implies the need for minimum computational and memory cost
in real time.

However, for most existing techniques that deal with scene
recognition, major computational time goes into the feature
extraction due to the complexity of the feature detector and
describer, e.g., SIFT [11], SURF [12]. Instead of computing
complex robust but computationally expensive descriptors, we
would like to focus on matching simple and lightweight de-
scriptors, by forming the extraction and matching process as a
statistical modeling procedure.

B. Contributions

In our previous work [13], we proposed a lightweight frame-
work for the scene recognition problem using an omnidirec-
tional camera as the only sensor. It focused on the nonparamet-
ric modeling of color-based features that are extracted from the
panoramic images, without detailed tests for performance and
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analysis. Based on these existing results, the following contri-
butions and evaluations are discussed in this paper.

1) Detailed explanation and discussion of the differences
between two matching algorithms: The heuristic naive
matching algorithm that is based on distance in the feature
space and the statistical method, namely, Dirichlet process
modeled fast adaptive color tags (DP-FACT). By investi-
gating illustrated cross-comparison matrices, we show the
decoupled feature space that is used by DP-FACT leads to
a more flexible algorithm and reliable results.

2) Further evaluations are carried out, e.g., the linearity of the
inference time against the number of topological nodes,
time cost for different descriptors, and different types of
CPUs, by which we show the potential to apply the pro-
posed framework on platforms with unfavorable hardware.
We also discuss the reason why the proposed statistical
model performs better than the naive matching algorithm.

3) Extended experiments on a widely cited dataset are in-
troduced. The results show the generalization capability
and lightweight computational complexity of the proposed
DP-FACT algorithm.

C. Outline

The remainder of this paper is organized as follows. We first
introduce the state of the art by referring to several aspects of
related works. After introducing the formation of FACT descrip-
tors in Section III, we recall some basic concepts related to the
DPMM and introduce how we use it for the topological mapping
problem in Section IV. In Section V, we describe an approx-
imation method for online reference of the DPMM, followed
by results of real-time experiments given in Section VI. The
conclusions and future steps of this study are discussed at the
end of the paper.

II. PREVIOUS WORK

A. Perception and Descriptors

Most of the existing place recognition systems assume a finite
set of place labels. The target problem is to determine the labels
for each image frame. These classifier-based approaches [14]
are limited to applications in predefined or known environments.
One of the mainstream techniques for visual scene recognition
is based on object detections [15]–[18]. A representative sce-
nario of these methods is to first detect known objects in the
scene and then maximize the posterior of the place label given
these recognized objects. Methods that are based on similar
concepts [19]–[21] use key-point-based features for complete
scenes, by which feature retrieval techniques, such as visual
vocabulary, are usually used for large-scale applications [22].
These methods are very robust when the objects are correctly de-
tected. Nevertheless, the state-of-the-art object detection meth-
ods [11], [12] are usually computationally expensive. They are
likely to be unfeasible on computers with limited resources,
even with optimizations [23], [24], let alone if the robot had
simultaneous tasks besides place recognition.

Several lightweight key-point descriptors were developed as
well [25], [26] and widely applied in scene recognition problems
[27]–[29]. Unfortunately, most existing applications either deal

with categorization of a finite number of known places or are
limited to offline inferences.

Besides the key-point-based approaches, descriptors using the
transformation/inference of whole images [30]–[35] are also
popular. Amongst the most similar to our previous contribu-
tions [13], [36] is the “fingerprint of a place” [37], [38]. Both
fingerprint and FACT use segments from unwrapped panoramic
images. The difference is that both [37] and [38] used a laser
range finder to help the matching of the descriptors, and FACT
only used color information from the segments. This means that
the proposed algorithm deals with noisier data and alleviates the
extra hardware constraints.

B. Sensors

As far as sensors are concerned, omnidirectional vision has
been shown to be one of the most suitable sensors for scene
recognition and visual topological mapping tasks because of
its 360◦ field of view [39], [40]. Another reason for choosing
omnidirectional vision is that when the camera is mounted per-
pendicularly to the plane of motion, the vertical lines of the
scene are mapped onto radial lines on the images. This means
that the vertical lines are well preserved after the transforma-
tion [36]. Several other approaches utilized this feature as well,
e.g., [37] and [41]. The proposed algorithm does not require a
full calibration of the omnidirectional camera. It only conducts
a detection function of the center coordinate of the panoramic
image, which supports the unwrapping operation.

C. Hierarchical Bayesian Modeling

Regarding inference approaches, hierarchical Bayesian meth-
ods have been widely used. For example, Vasudevan et al. first
built a hierarchical probabilistic representation of the environ-
ment and then used Naive Bayesian to carry out model in-
ference [17]. Furthermore, hierarchical probabilistic methods
based on statistical techniques are very successful in text min-
ing and biological information processing [42], [43].

Theoretical advances in hierarchical probabilistic models,
such as LDA [43] and HDP [42], provide good support for
the proposed algorithm. The DPMM enables countable infinite
clusters for the measurements, which can be used to represent
the process of state detection and recognition. Fei-Fei and Per-
ona [44] proposed a key-point-based approach using this frame-
work to cluster natural scenes. Nevertheless, this study deals
with indoor environments by using lighter descriptors. In gen-
eral, these related works only consider one type of observation,
e.g., object names or text semantics. In this study, we adopt the
classical mixture model and then fit it into multiple types of
observations. At the same time, we allow infinite increment of
the number of labels. Furthermore, the model is to be learned,
updated, and inferred in real time online.

D. Clustering

In order to automate the classification and recognition pro-
cess, an unsupervised learning algorithm is required. Sophis-
ticated clustering algorithms usually rely, at least in part, on
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iterative calculations such as K-means, spectral clustering [45],
or affinity propagation [46]. An example of an online reasoning
approach is the Chow–Liu tree-based segmentation for static
data [47] and change-point detection for sequential data [48],
[49]. Recent research showed that semisupervised clustering is
also an efficient way in topological structural analysis [50]. For
extreme cases, the synchronization of multisensor data needs
to be managed [51], [52] or spatial and temporal hints must be
jointly considered [53]. In this paper, a naive online change-
point detection algorithm is implemented.

E. Recognition and Inference

Recognition is at the core of most robotic applications. For
example, robot topological mapping requires detection and
recognition of loop closure; semantic mapping usually requires
recognition of objects, and human–machine interfaces require
recognition of human behaviors. Researchers targeting these
core problems attempt to seek the best algorithms to represent
this perception process efficiently.

Concerning inference approaches, hierarchical probabilistic
methods based on statistical techniques have achieved great
success in text classification and biological information process-
ing [42], [43]. In this study, we adapt the classical mixture model
to allow multiple types of observations. At the same time, we
allow infinite increment of the number of labels. Furthermore,
the model is derived and inferred online.

In most of the related works, change-point detection is the ba-
sis for segmenting a data sequence [49], [54], [55]. In this study,
since we are targeting a lightweight method, the change-point
detection is not feasible when using multiple hypothesis meth-
ods, e.g., particle filtering [49]. Instead, we use a nonparametric
statistical test to evaluate the labeling for each frame separately.
This may cause instability in the output label, but it alleviates
the requirement to store all previous measurement data in the
sequence.

F. Topological Mapping

Several works deal with the extraction of topological regions
from metric maps. Intuitively, a topological map is defined as a
graph structure, which is composed of nodes and links among
them. In general, there are two types of topological maps,
depending on what a node represents. Most existing works
consider nodes in a topological map as waypoints [56]–[61]
in the metric map. The rest consider nodes as interesting re-
gions [62]–[64], namely region-based topological maps. Con-
ceptually, both types describe environments by topology repre-
sentations, typically by using graph structures. However, they
have different purposes in terms of robotic tasks. The first type
is generally built for facilitating navigation [60], [65] using local
navigation [66], [67] methods between nodes, or using topolog-
ical pose graph [68]. The second type is to enable robots to share
a common understanding of the environment with humans, such
as in [64], [69], for service purposes. The proposed method con-
siders topological mapping in twofold way. First, it aims to find
a way similar to how humans would model the world. Second,

Fig. 1. Extraction of vertical segments. (a) Unwrapped panoramic image.
(b) Output of vertical edges detection. (c) Segmentation result.

at the same time, it helps several aspects of robot navigation,
e.g., loop closing or node formation.

G. Further References for Color Features

As for color features, besides the fingerprint of place [37], a
detailed report on the state of art can be found in [70]. Generally
speaking, a color feature is a weak descriptor, as it can be easily
affected by lighting conditions. It is the main reason for using a
statistical method to minimize the uncertainty.

III. DESCRIPTOR

In this section, we first introduce how the FACT descriptor is
extracted from omnidirectional camera images. Then, we show
how FACT can be represented, based on absolute measurements
and statistical ways, e.g., histograms. In addition, we present
a naive approach to match two FACT descriptors and depict a
distance matrix over frames of an indoor dataset.

A. Segmentation of the Panorama

The proposed descriptor is based on color features and seg-
mentation of the panoramic image. Since the vertical lines from
the environment are preserved during a typical motion of mo-
bile robots in a 2-D plane, the dominant vertical lines are used
to segment the panoramic image. The examples of extraction
results are shown in Fig. 1.

After unwrapping the raw panoramic image [see Fig. 1(a)], we
apply, in sequence, Sobel filtering (only along the x direction),
Otsu thresholding [71], and morphological operators to extract
the most dominant vertical lines. Fig. 1(b) shows the result of the
vertical extraction process. Note that only half of the unwrapped
image is shown here because of the width limitation.

The dominant vertical lines are chosen based on their length.
The lines with length above the average are retained. Morpho-
logical operators are used to fuse the lines, which are too close
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Fig. 2. Segmentation process.

to each other, as a single line. The detailed processing phases
are shown in Fig. 2.

As observed in Fig. 1(c), the vertical lines partition the
panoramic image into multiple regions. In the next section, we
will explain how to extract color-based lightweight descriptors,
which we name Tags, from these regions.

B. FACT Descriptor

In this section, we describe the components that construct a
FACT descriptor. The color representation in RGB color space is
not suitable, since it is sensitive to illumination changes, which
may be caused by translation and rotation of the omnidirectional
camera, as well as different times of the day. Alternatively, we
use the YUV color space. The Euclidean distance between two
color sites is shown as

⎧
⎪⎨

⎪⎩

Ui = 0.7 ∗ Ri − 0.6 ∗ Gi − 0.1 ∗ Bi

Vi = 0.9 ∗ Bi − 0.3 ∗ Ri − 0.6 ∗ Gi

Dis1,2 =
√

(U1 − U2)2 + (V1 − V2)2 .

(1)

Different environment lights may cause white-balance changes.
In order to automatically adjust the white-balance, we imple-
ment a PD controller to adjust camera parameters. The camera
parameters are tuned according to sampled UV values from a
reflective white paper, which is stuck in the field of view.

C. Construction of the FACT Descriptor

We extract the descriptor based on the segmented unwrapped
image explained in the previous section. In this study, we chose
the YUV color space, where the Y signal represents the overall
brightness of the pixel and U–V are the two chromatic compo-
nents. The benefit of using this color space is that we only need
two elements (i.e., U and V) to represent a color, regardless of
its brightness.

For each region between two vertical lines, the average color
value in the U–V space is extracted. Compared with other key-
point-based or edge-based descriptors, an obvious advantage
of our approach is that the similarity between features in the
U–V space can be simply measured in terms of a 2-D Euclidean
distance. The descriptor is formed by the U–V color information
and the width W (in pixels) of the region, which is delimited
between two vertical edges. Instead of taking each pixel in every
region into account, we directly use the average of U–V value
that was calculated for each region. Ui and Vi indicate the color
information of region i.

One primitive idea is that even if the width of each region
may change during the translation of the camera, the projected
area in the real world can be well determined in a local neigh-
borhood, as long as the segmentation stays consistent. In this
case, the average value of a certain region in the color space
remains constant. On the other hand, we must avoid false posi-
tive matches that are caused by color similarity of regions. For
example, the difference between a green cup and a green cabinet
may be very small in color space, but the geometric features of
these two are distinguishable. Therefore, we employ the width
of the corresponding region Wi as the third dimension of our
descriptor. By testing the ratio of the corresponding regions’
width, the descriptor can get more reliable results. Let N be the
number of regions segmented from the unwrapped image1. The
dimension of the FACT descriptor of a scene is 3 × N . A sample
descriptor D is shown in (2). Each column in the descriptor is
named a Tag

D =

⎛

⎜
⎝

U1 U2 UN

V1 V2 . . . VN

W1 W2 WN

⎞

⎟
⎠ . (2)

D. Statistical Representation of FACT

DP-FACT [13] grants the FACT descriptor statistical mean-
ings. DP-FACT uses two multinomial distributions, i.e.,
DP-FACTt := {wt, gt}, to show the statistical distributions of
Tag’s over discrete feature spaces. Considering a serialized dis-
cretization of the U–V color space into m bins, and the number
of Tags for a given image at timestamp t is N , we derive the
distribution of the color component gt as follows:

gt ∼ p(r̄;N,m, h̄) =
N !

r1 !r2 ! · · · rm !
hr1

1 hr2
2 · · ·hrm

m (3)

where the variable r̄ is a vector with m integers for which
0 ≤ ri ≤ N and

∑
i ri = N . N > 0 and m > 2 are integers,

and h̄ is a vector with elements 0 ≤ hi ≤ 1,
∑

i hi = 1.
Similarly, the width component wt can also be defined for

each image t, such that

wt ∼ p(r̄′;N,n, h̄′) =
N !

r′1 !r
′
2 ! · · · r′n !

h′r ′
1

1 h′r ′
2

2 · · ·h′r ′
n

n (4)

1According to our experiment, N is usually smaller than 100 and greater than
20 for typical indoor environments.
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Fig. 3. Example of histograms over discretized UV space extracted from four
images. The color bars indicate the number of hits onto the discretized cell of
UV space. The dimension indices are marked on the first image.

where the vectors r̄′ and h̄′ are similarly defined as r̄ and h̄,
respectively. The parameter n is the cardinality of the discretiza-
tion for the width of Tags.

In practice, normalized histograms of the number of Tags
over the discretized feature space can be used and considered
as samples from the feature distributions. Four examples of gt’s
are illustrated in Fig. 3, where the color of the bars indicates the
height, i.e., the relative number of collected features for each
bin.

Intuitively, the distributions in the same row are similar,
namely that the difference between rows are greater than that
within the same row. The quantitative representation of the
differences is analyzed in Section V. Note that DP-FACT fa-
cilitates modeling and inference of the sensor measurements,
since multinomial distributions are adopted to represent statis-
tical characteristics of each image frame directly.

Before we jump into the DPMM-based topological mapping,
let us first have a look at a naive matching algorithm. We will
then conclude this section by examining the drawbacks of this
naive matching algorithm.

E. Naive Matching Algorithm

1) Descriptor Matching Based on Euclidean Distance: Be-
cause color descriptors are very weak, the fundamental part of
our method is the matching. In our previous paper [36], we
demonstrated a naive matching algorithm using a three-step
strategy as follows:

1) Test 1: Tag matching in the U–V Color Space;
2) Test2: Tag matching in geometric space;
3) Test 3: Descriptor matching.
The matching process is summarized in Algorithm 1. It in-

cludes a Tag-level comparison, as depicted in Fig. 4. From Al-
gorithm 1, it can be seen that the Euclidean distance is used to
measure the difference between two color descriptors. We could
imagine that observation noise, such as misdetection of vertical
separation lines, can easily damage the result, because it relies
on accurate absolute measurements.

Fig. 4. Schematic diagram of Test 1 during the matching process.

2) Pairwise Distance of Color Features: In order to test the
saliency of the proposed lightweight color feature, i.e., the last
two dimensions in YUV color space, we cross compare the
belief that frame n belongs to the topological node defined by
frame m.

The test is carried out on a dataset taken in a typical indoor
office environment. The dataset is also used for further evalua-
tions in Sections V-C and VI. It is comprised of a sequence of
920 images, captured on a differential driven mobile robot, with
an average frame rate of around 7 fps.

The pairwise beliefs in the sequence, indicated by line 11 in
Algorithm 1, construct a distance matrix as shown in Fig. 5. It
intuitively shows the distinctions among different frames using
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Fig. 5. Distance matrix for the belief pairs.

color-based appearances. We can see that the adjacent frames
from the image sequences show higher beliefs to be clustered
together, which are illustrated with lighter color blobs. At the
same time, there are certain possibilities for those nonadjacent
frames to be classified as the same scene as well, in the case that
the robot may have returned to a previously visited place.

3) Drawbacks of the Naive Matching Algorithm: The naive
matching algorithm in Algorithm 1 has been studied and com-
pared with different perspectives [66], [72]–[74]. According to
our further study, the major disadvantages of the naive matching
approach are as follows.

1) The matching step was a point estimator, which did not
consider probability and multihypotheses.

2) The false positive ratio of scene changing detection was
high; therefore, it required an offline refinement.

3) The cardinality of the control parameters was big. Five
parameters needed to be adjusted.

In order to overcome these shortcomings, we need to refac-
torize it as a probability-based framework. We present the al-
ternative DPMM, which we propose for topological mapping in
the next section.

IV. MODEL OF TOPOLOGICAL MAPPING

Topological mapping and scene recognition are two sides
of the same coin. They both reflect the process of detecting
changes and relocalizing in an existing topological environment
model. The optimized DPMM for topological mapping that uses
the proposed lightweight color descriptor is shown in Fig. 6.
The parameters are depicted in rectangles and random variables
are in circles. As a convention, we use a plate representation
for repeated components. The model depicts two conditional
independent processes given measurements gt and wt . The two
processes are explained as follows.

Fig. 6. System model.

A. Chinese Restaurant Process (CRP)

The Dirichlet process G is formulated with a base distribution
H and a concentration parameter α. The base distribution is the
mean of G and the concentration parameter α acts as an inverse
variance. The distribution G is comprised of point masses, and
samples from G will be repetitively drawn, considering the case
of an infinite sequence. Additionally, φt is an indicator of the
cluster identity to which the current image belongs.

Therefore, φt is the target variable of inference. If the process
is considered a partition problem, a CRP model is commonly
used. A CRP model can use priors that are obtained from a stick-
breaking process [75]. By integrating over G, the next sample
for cluster identity is described by

φt |φ1:t−1 ∼
∑t−1

n=1 δφn
+ αH

t − 1 + α

where δφn
is an indicator of the mass-point function located at

the nth frame, which is labeled as φn . It implies that the more
we see a certain cluster of data, the higher a prior that data
from such cluster may be observed again. The problem is then
converted to an estimator of the posterior

P (φt |φ\t , G, g,w,θ,ω;α, β, λ)

where φ\t is the full set of indicators excluding the current
one up to time t. Variables g and w are the observed feature
measurements, following the definitions of (3) and (4). θ and ω
are the sensor models for color and geometric information, with
priors β and λ. Conventionally, random variables and parameter
sets are shown in bold text.

B. Sensor Data Perception

The observable random variables from the model are two
multinomial distributions gt and wt , which are associated with
two histograms by accumulating the number of features that
hit their own discretized space. Taking wt for instance, it is a
multinomial distribution that represents a single histogram of
different width of Tags in one FACT feature. The dimensions
of samples gt and wt are Duv and Dw , respectively, indicating
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the dimensions of the discrete UV space and width space. The
number of samples is represented by N , which is equal to the
number of sequential frames during the experiment.

By only considering wt , for example, as it is a multinomial
distribution, wt is subject to a Dirichlet distribution prior ωj .
Assuming there are K different scenes, ω will be a matrix of
dimensions K × Z. wt’s of dimension Z are drawn from ω.
Z is the number of possible histograms given the maximum
number of Tags in a frame, which is a large number. Since we
use an approximation method for the inference in Section V,
the precise expression of Z is not necessary. Note that because
θ and ω are discrete, P (θt1 = θt2) �= 0,P (ωt1 = ωt2) �= 0, for
different time stamps t1 and t2.

In summary, on one hand, observations are inherently deter-
mined by its label φt , as defined previously; on the other hand,
we can also consider the observations gt and wt as samples from
a sensor model θr and ωj for cluster k, respectively. The sensor
model priors are given by β and λ. So far, we have built a model
of two subprocesses, namely a perception process and a sensor-
ing process. They serve as the basis for building a data-driven
inference model for the recognition problem.

C. Model Inference

As a summary of the proposed model

G ∼ Dir(αH)

φt |G ∼ G

gt ∼ F (φt, θφt
)

wt ∼ Q(φt, ωφt
)

where F and Q represent the generation processes of the mea-
surements from the base models, according to the label φt .

The joint probability can be written directly as

p(φGθ ω g w;β, λ) =
K∏

r=1

p(θr ;β)
K∏

j=1

p(ωj ; λ)

×
N∏

t=1

p(G;H,α)p(φt |G)p(gt |θφt
)p(wt |ωφt

).

In order to factorize it into independent components, we in-
tegrate the joint probability over ω, θ, and G

p(φ g w;β, λ) =
∫

ω

∫

θ

∫

G

p(φGθ ω g w;β, λ)dGdθ dω

=
∫

ω

K∏

j=1

p(ωj ; λ)
N∏

t=1

p(wt |ωφt
)dω

×
∫

θ

K∏

r=1

p(θj ;β)
N∏

t=1

p(gt |θφt
)dθ

×
∫

G

∫

H

N∏

t=1

p(φt |G)p(G;Hα)dHdG. (5)

The last component is an expectation on G, i.e.,
EG [p(φ1 φ2 φ3 φ4 · · ·φN |G)]. According to the characteris-

tics of the Dirichlet process, it is proportional to the product∏N
t=1 p(φt |φ\t) ∝ p(φt |φ\t). Therefore

∫

G

∫

H

N∏

t=1

p(φt |G)p(G;Hα)dHdG ∝
∑N −1

t=1 δφt
+ αδφk̄

N − 1 + α

(6)
where δφn

is a mass point function located at φn . k̄ is the
indicator of a new cluster.

The first two parts can be treated in a similar manner. Taking
the first part for instance, using nj

v to represent the number of
frames, whose width histogram is the vth element in ωj within
cluster j, we obtain

∫

ω

K∏

j=1

p(ωj ; λ)
N∏

t=1

p(wt |ωφt
)dω

=
K∏

j=1

∫

ωj

p(ωj ; λ)
N∏

t=1

p(wt |ωφt
)dωj

=
K∏

j=1

∫

ωj

Γ(
∑Z

v=1 λv )
∏Z

v=1 Γ(λv )

Z∏

v=1

ωλv −1
j,v

Z∏

v=1

ωnj
v

j,v dωj

=
K∏

j=1

∫

ωj

Γ(
∑Z

v=1 λv )
∏Z

v=1 Γ(λv )

Z∏

v=1

ωλv +nj
v −1

j,v dωj (7)

since the integral of the Dirichlet distribution equals unity

∫

ωj

Γ(
∑Z

v=1 λv + nj
v )

∏Z
v=1 Γ(λv + nj

v )

Z∏

v=1

ωλv +nj
v −1

j,v dωj = 1. (8)

Equation (7) can be continued as

∫

ω

K∏

j=1

p(ωj ; λ)
N∏

t=1

p(wt |ωφt
)dω

=
K∏

j=1

∫

ωj

Γ(
∑Z

v=1 λv )
∏Z

v=1 Γ(λv )

∏Z
v=1 Γ(λv + nj

v )

Γ(
∑Z

v=1 λv + nj
v )

. (9)

It is similar for the integration over θ. The joint probability is
then represented using

p(φ g w;β, λ)

∝
K∏

j=1

Γ(
∑Z

v=1 λv )
∏Z

v=1 Γ(λv )

∏Z
v=1 Γ(λv + nj

v )

Γ(
∑Z

v=1 λv + nj
v )

K∏

j=1

Γ(
∑Y

v=1 βv )
∏Y

v=1 Γ(βv )

∏Y
v=1 Γ(βv + nj

v )

Γ(
∑Y

v=1 βv + nj
v )

×
(∑N −1

t=1 δφt
+ αδφk̄

N − 1 + α

)

. (10)

When we consider a collapsed Gibbs sampling process on the
cluster indicator φt at time t, we have

p(φt |φ\t g w;β, λ) ∝ p(φt φ\t g w;β, λ). (11)
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However, the large size of Z makes the direct inference impos-
sible. In general, sampling methods [76] are used to estimate the
posterior, but they are usually computational expensive. Here,
we propose a real-time approximated solution. The first two
parts are indications of the relation between the reference distri-
bution of ωk and βk , and the current measure of frame i. Using
ξ() and μ() to represent these two relations, we could rewrite
(11) as

p(φt = k|φ\tg w)

∝
Γ(λp + nk

p )

Γ(
∑Z

v=1 λv + nk
v )

Γ(βq + ck
q )

Γ(
∑Y

u=1 βu + ck
u )

(∑N −1
t=1 δk +αδφk̄

N − 1+α

)

= ξ(wt |ωφt
)μ(gt |βφt

)p(φt |φ\t). (12)

In the next section, we approximate both conditional prob-
abilities ξ(·|·) and μ(·|·) based on a common nonparametric
statistical test: χ2 test. This leads to the improved approach for
matching two DP-FACT features.

V. MATCHING OF DIRICHLET PROCESS MODELED FAST

ADAPTIVE COLOR TAGS

Most existing methods for DPMM use offline infer-
ence, mainly because the inference is time consuming. The
Monte Carlo Markov chain (MCMC) sampling method [77]
is considered as the standard approach [76]. In order to solve
the inference problem in real time in an online manner, the in-
ference of the conditional probabilities is to be approximated
directly. When it is possible, it relieves the need to calculate the
joint probability. Recall that the equation of the posterior of the
place labeling, depicted in (12), includes three parts. The last
part is a representation of a prior CRP based on the previous
observed labels. It can be calculated directly from the history
of measurements. The first two parts are similar. Typically, they
are estimated by sampling methods. A closer look at them will
reveal that they calculate the gamma function of the count of
a certain observation over all the possibilities. In other words,
they represent the probability of a certain histogram showing up
in a sequence of observations. Therefore, it is a measure of the
similarity of the current observation to all the predefined mod-
els. As a result, no sampling methods are needed to estimate
this measure if we can approximate the underlying similarity
between the current observation and the reference models. This
is the basic idea of our online inference method.

A. Nonparametric Test

Since both observation and existing models are inherently
histograms, the similarity between them can be estimated by
nonparametric statistical methods. Here, we introduce our ap-
proximation of 11 using the χ2 test.

The χ2 test is formalized as follows [78]:

χ2(m,n) =
r∑

t=1

(nt − Np̂t)2

Np̂t
+

r∑

t=1

(mt − Mp̂t)2

Mp̂t
(13)

where p̂t = nt +mt

N +M ,N =
∑r

t=1 nt,M =
∑r

t=1 mt, r is the di-
mension of both histograms, and nt and mt are the number

of hits at the bin t. The converging condition is
∑r

t=1 pt = 1
according to the definition. For the bins where both histograms
have 0 measure, the calculation is skipped.

According to (10), the observed distribution is determined by
both the history of observations and the Dirichlet prior. How-
ever, the χ2 test only provides an estimation of the probability
of the current observation referring to the base distribution. It
can be further inferred as a statistical count of occurrences while
considering the history of observations. In order to compensate
the lack of information of the Dirichlet prior, we define a weight-
ing factor ρ to adjust the influence of both measures, i.e., the
measure in the color space and geometry space. The estimator
of the target label is therefore approximated as

p(φt = k|φ\t , g w) ≡ p(φt |φ\t) · ξ(wt |ωφt
) · μ(gt |βφt

)

∝
(∑N −1

t=1 δφt
+ αδφk̄

N − 1 + α

)

e−ρχ2 (wt ,ωk )−(1−ρ)χ2 (gt ,θk )

(14)

where ρ ∈ [0, 1]. If ρ = 1, then the estimator (14) considers
only the geometry measure, and vice versa. Using the form of
(12), the two targeting conditional probabilities are formalized
as follows:

ξ(wt |ωφt
) ∝ e−ρχ2 (wt ,ωφ t )

μ(gt |βφt
) ∝ e−(1−ρ)χ2 (gt ,θφ t ) . (15)

B. Model Update

Despite the fast calculation, the nonparametric statistic that
was introduced in (14) has an obvious disadvantage. It can be
seen that the nonparametric test is a point estimation without
considering previous information. In order to remedy this dis-
advantage, a model update algorithm is developed. Unlike (12),
where the previous information is represented by the counts of
occurrences nk

p and ck
q , we require a method to take the history

of data into account. This means that the reference models ωk

and θk need to be able to fuse information from all the existing
measurements. Instead of saving all the previous observations,
we propose an iterative method to fuse the current measurements
with existing models as follows:

θt+1
k =

nt
k

nt
k + 1

θt
k +

1
nt

k + 1
gt

ωt+1
k =

nt
k

nt
k + 1

ωt
k +

1
nt

k + 1
wt (16)

where nt
k is the number of frames that have been clustered

as label k by time t. Therefore, the update process in (16) is
a weighted mean by combining the existing knowledge and
the new observation at each time step. The advantages of this
model update algorithm is obvious. On one hand, it can be
calculated online with low requirements on computational and
spatial costs. On the other hand, it reflects the history of data in
the updated model directly.
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(a)

(b)

Fig. 7. Pairwise distance matrix in UV-color and width space.

C. Pairwise Distance for DP-FACT

Following the discussion in Section III-E2, we analyze the
distance matrices of the χ2 test results and the compound pos-
terior. In order to keep the consistency, the same dataset as that
are mentioned in Section III-E2 is used. The result of the dis-
tance matrix in color space is depicted in Fig. 7(a), and that in
width space is shown in Fig. 7(b). An intuitive observation is
that color features are able to partition the whole sequence into
more segments compared with width information. The χ2 test
leads to more distinctive separations than the results of the Eu-
clidean distance. Besides, it is interesting to see that the χ2 test
result for histograms of Tag-width can also indicate the similar-
ity between adjacent frames. This means that the fusion of these
two parts of information can determine the recognition results
more reliably by introducing multiple constraints. As previously
discussed, adjustment to the parameter ρ leads to changes in the
posterior. Compared with Fig. 7, we show in Fig. 8 that a higher
ρ value, which increases the significance of color features, leads
to a greater number of potential change points, since the color
features are more salient than width features.

(a)

(b)

Fig. 8. Distance matrix using combined features for different ρ values.

Fig. 9. Resulting distance matrix using a median filtering.

The result obtained by introducing a median filter is shown in
Fig. 9. Note that we change the color map of the figure intention-
ally for better visibility. The off-diagonal light blobs show that
the corresponding frames are similar in appearance. However,
this pairwise result does not imply the number of topological
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nodes, since the node models keep evolving regarding (16),
whenever a new positive reading is detected. Here, we simply
use these plots to reveal the distinctiveness and feasibility of the
proposed DP-FACT features. The result of a real-time experi-
ment including all the components of (12) is shown in the next
section.

D. Discussion on the χ2 Test and Naive Matching

In this section, we show the theoretical insight into why the
χ2 test provides more distinct results. A typical result can be
seen by comparing Figs. 5 and 7(a). For two feature vectors x1

and x2 , a summation form of Euclidean distances is represented
by

de =
√

(x1 − x2)T (x1 − x2) =
√

(x1 − x2)T Ikk (x1−x2)
(17)

where Ikk is an identity matrix with the same dimension as the
feature. It can be interpreted that the covariance of the features
is not considered.

On the other hand, considering the χ2 test that is introduced in
(13), it has a limiting χ2 distribution with N + M − 1 degrees
of freedom. Under the null hypothesis, it has the mean vector μ
and covariance matrix V as follows:

μ = (N + M) × (p̂1 , p̂2 , . . . , p̂r )T (18)

V =(N + M)

⎛

⎜
⎜
⎝

p̂1(1 − p1) −p̂1 p̂2 . . . −p̂1 p̂r

−p̂2 p̂1 p̂1(1 − p̂1) . . . −p̂2 p̂r

...
...

. . .
...

−p̂r p̂1 −p̂k p̂2 . . . p̂r (1 − p̂r )

⎞

⎟
⎟
⎠

(19)

using the notation of (13). This additional information enables
that all the Tags in a FACT descriptor are jointly considered
with respect to the frequency of hits on each discrete bin of the
feature space.

E. Discussion on Data Modeling

We address the major differences between the proposed DP-
FACT and the naive matching method introduced by Algorithm
1 as follows.

1) The matching process is no longer a point estimator with
the DPMM. With multiple hypotheses, the final output is
a maximum-a-posterior (MAP) result instead.

2) New nodes are incrementally generated online, and the
false positives are, due to noise, with low priority with
regard to the CRP process. It is an important feature for
applications on a larger scale.

3) Last but not the least, the designed DPMM takes into
consideration that the observations from sensors are con-
ditionally independent when the label is given. This can
also be inferred from (14). This shows that even with more
than two observations, it is possible to fuse the information
related to a certain label (place, scene) efficiently.

Fig. 10. Sample images: (a) corridor and (b) coffee room.

VI. EXPERIMENTS

The results of experiments are introduced in this section. Our
approach is compared with key-point-based methods in terms of
labeling accuracy, performance, and inference complexity. Two
samples of the unwrapped images are shown in Fig. 10.

A. Comparison in Accuracy

As described in [29], the SIFT feature demonstrates a supe-
rior accuracy in scene transition detection and recognition accu-
racy compared with CENTRIST and the texture-based method.
In this paper, we compare the proposed DP-FACT with SIFT,
as well as a newly developed lightweight key-point descriptor
BRISK [79]. These two descriptors represent the most sophisti-
cated and novel state-of-the-art binary descriptors, respectively.
It has been reported [79] that the BRISK feature is around
15 times faster than SURF [12] features considering feature
extraction and matching. Meanwhile, the BRISK feature has
similar performances to SURF, or even better.

As for the key-point-based methods (SIFT and BRISK), we
use the unwrapped images as inputs. The algorithm is designed
as follows. First, key-point feature extraction is performed on the
input images. Then, the current image is matched with reference
images, which have been observed in the past, to get the most
similar reference. If the ratio of #2 positively matched features
and # features extracted from reference images is above a given
threshold (in this case 70%), then we label the current image
with the same label as the best matched reference; otherwise,
the current image is given a new label by taking it as a newly
added reference image.

The test result is shown in Fig. 11. In order to ease the compar-
ison, the figures are aligned in time series. The first two plots on
the top are the raw output of DP-FACT and the result after me-
dian filtering over the past five frames. Note that further offline
smoothing of the labeling can be implemented as well [36], [80],
which can potentially provide more precise results. The results
of key-point-based methods after the same median filtering are
given in the third plot. Specifically, the vertical axis of the top
three subfigures in Fig. 11 indicates the online recognized labels.

The results indicated by the top three plots in Fig. 11 show
that the proposed DP-FACT framework leads to more stable out-
puts than key-point-based methods. On the contrary, key-point-
based methods have a high false positive ratio on the transition

2# means “the number of.”
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Fig. 11. Experimental results. (From top to bottom) The raw labeling output of DP-FACT; the result of DP-FACT after the median filter of five frames; the result
of key-point-based approaches (SIFT, BRISK) after median filtering; the image sequence in a compressed layout; the manually labeled ground truth; the result of
DP-FACT; label explanations; and an overlaid sketch of the test environment by detected scene appearances.

detection, because the labeling is dominated by massive changes
of key points, even in the same scene. As a result, a high scene
change rate was observed and the number of scenes detected
from the sequence is much higher.

The “compressed image sequence” stripe shows a squeezed
summary of the whole image sequence, from which the scene
changes can be intuitively observed. The “experimental result”
shows the filtered output of DP-FACT.

The “transition areas” indicate that the robot is closely passing
a doorway or turning corners, where the scene recognition does
not make much sense and is therefore not considered in the
statistical results. The corresponding behavior of the algorithm
is that the output label can hardly be stable even after median
filtering, which can be readily detected and labeled.

The “ground truth” is manually labeled by only observing
the input video sequences. This means that the images with
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TABLE I
ACCURACY OF SCENE RECOGNITION

a similar appearance are considered to be obtained from the
same scene. Compared with “experimental result,” we could
infer that the change point detection is more practical than
the key-point-based approaches. An overlaid 2-D sketch of
the target environment against the experimental results of
DP-FACT is depicted at the bottom of Fig. 11. The image
sequence starts from the right side of the map. Sample images
from different scenes are illustrated around the sketch, which
shows the differences in appearance at various scenes. Although
with some misclassifications, DP-FACT shows more reliable
and feasible results for the scene recognition.

As part of the quantitative comparison, Table I shows the
accuracy of scene recognition. Because the transition detection
for key-point-based methods is vague, which leads to frequent
false positives, the scene recognition results for key-point-based
methods are calculated by considering nonrepeated labels in the
same scene as a group. Since FACT requires an offline filtering,
the comparison is not included. We can see that DP-FACT has the
best recognition accuracy, though color is a relatively “weaker”
feature than key-point descriptors.

Two possible reasons why key-point-based methods do not
perform as well as DP-DACT can be considered. First, the distor-
tion of the uncalibrated omnidirectional images causes nonuni-
form resolution of the unwrapped images, which makes the key-
point-based feature extraction unstable, especially when the key
points are at different distances. Second, DP-FACT is structured
only in the horizontal direction, by which the information is
summarized in one dimension. However, key points can only
be possibly detected anywhere on the whole 2-D surface of the
image. This consistency of feature construction maximizes the
difference between any two labels and more importantly mini-
mizes the influence of unexpected randomness.

B. Evaluation of Time Cost

The evaluation of time cost is shown in Fig. 12. Because the
number of nodes rises during the test, we see that the overall time
rises slightly as well. Compared with the time cost of common
sampling methods, the gray area in Fig. 12 indicates that the
expected inference time of the proposed estimation is less than
5 ms.

We make a further study of the relation between the inference
time and the complexity of the model. Fig. 13 depicts a regres-
sion result of the inference time over the number of nodes, which
is substantially linear. This result implies that the potential of the
proposed method can be extended to large-scale environments
without jeopardizing the capability of performing in real time.

Let us recall the test in Fig. 11. In addition to the supe-
rior recognition accuracy, DP-FACT shows faster performance.

Fig. 12. Time cost of DP-FACT over frames. The lines are filtered results out
of raw measurements (in circles). The gray area indicates the inference time.

Fig. 13. Inference time versus the number of nodes.

Fig. 14. Time cost comparison.

Fig. 14 illustrates the computational cost of each approach. Fur-
ther details about implementations are given in Table II.

Our aim is to develop a scene recognition algorithm, which
can be implemented online with limited computational re-
sources. We evaluated the algorithm on three different types of
CPUs in order to show that our method is suitable for different
applications. The result is shown in Fig. 15. We see that even for
early CPUs, the algorithm can still reach around 17 Hz (cycle
time = 58.6 ms).
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TABLE III
TEST RESULT ON COLD DATASETS

TABLE II
IMPLEMENTATION DETAILS OF THE THREE COMPARED APPROACHES

Fig. 15. Performance on different CPUs, using single core.

C. Further Experiments on a Public Dataset

In order to further validate the results, we apply the proposed
DP-FACT onto a widely cited dataset called COLD [81]. It is
a collection of indoor omnidirectional images from Freiburg,
Ljublijana and Saarbrücken. Since the white balance for those
images could not be properly adjusted in an online manner, we
use only the ones captured in cloudy weather in order to mini-
mize the influence on standard color. Statistical results are illus-
trated in Table III. The definition of each column is explained
as follows:

Dataset : name of the test dataset;
#Image : #images included in the dataset;

#SemNode : #provided labeled semantic nodes;
#Node : #detected nodes using DP -FACT ;
#Tran : detected #scene transitions;
#Tag : average #detected Tags per image;

Total Time : statistics of the total time cost per image;
Inference Time : statistics of the inference time per image.

Table III shows that DP-FACT can segment the environment
with low computational time. The Freiburg dataset results in
higher total time cost. This is because there are in general more
Tags detected, and the additional time cost is due to the descrip-
tor construction. Note that the number of detected nodes (i.e.,
#Nodes) is usually higher than the number of manually labeled
semantic nodes, because, for most cases, the manually labeled
semantic areas, such as “a corridor,” may contain multiple ap-
pearances. Taking Fig. 16 as an example, where the standard

Fig. 16. Segmentation result based on DP-FACT for Freiburg Path A [81].

trajectory for Path A is used [81], we see that the corridor la-
beled ©2 is actually segmented into five regions with respect to
door positions, etc. Different colors are used to indicate the seg-
mentation results. The statistical results in the last two columns
show that the computational time is stably low. Importantly,
the rise of #Image does not significantly increase the inference
time, by which the generalization capability for larger datasets
is revealed.

VII. CONCLUSION AND FUTURE WORK

In this paper, a lightweight color-based framework for scene
recognition and topological modeling of indoor environments
using omnidirectional cameras has been presented. We proposed
using a DPMM to manage new scene registration and recogni-
tion simultaneously. The results of the experiment showed the
advantage of the proposed framework in terms of online com-
putation ability and better recognition performance than key-
point-based methods. This study also showed that the inference
of a DPMM can be approximated by reasoning the conditional
probability directly. We envision that similar concepts can be
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adopted to solve other inference problems with large target space
as well. It is also possible to use such models for a data modeling
problem with multiple observations.

The proposed FACT descriptor only deals with indoor envi-
ronments, where vertical lines are preserved in the field of view
of unwrapped panoramic images obtained by omnidirectional
cameras. Therefore, the results do not imply that the extended
applications for a semistructured environment are easily feasi-
ble. Not withstanding this limitation, this study does suggest
that color-based features can be integrated with a real-time on-
line scene recognition and topological mapping robotics system,
with relatively good performance. It can be imagined that the
combination of key-point-based and color-based methods will
help to solve this problem at a hybrid level, without limiting the
target environment. Regarding the loop-closing problem, the
proposed framework can help in the selection of target poses to
be matched, with low computational cost. The conducted results
will be shown in our future work.
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