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Abstract—Mobile wheeled- or tracked-robots drive in 2.5-
dimensional (2.5D) environments, where the traversable surface
can be considered as a 2D-manifold embedded in a three-
dimensional (3D) ambient space. In this work, we aim at solving
the 2.5D navigation problem solely on point-cloud.

The proposed method is independent of traditional surface
parametrization or reconstruction methods, such as a meshing
process, which generally has high computational complexity.
Instead, we utilize the output of 3D tensor voting framework
(TVF) using raw point-clouds. A novel local Riemannian metric
is defined based on the saliency components of TVF, which helps
the modeling of the latent traversable surface. Using this metric,
we prove that the geodesic in the 3D tensor space leads to
rational path-planning results. Compared to traditional methods,
the results reveal the advantages of the proposed method in terms
of facilitating the robot maneuver with minimum movement.

I. INTRODUCTION

The development of robotics is always inspired by human
experience and activities. Taking the typical scenario shown in
figure 1 for instance: an elder man is trying to fetch the blue
cup which is filled with his favorite coffee. Out of rational
consideration, he probably would take the cyan (light color)
detour rather than the red (dark color) bumpy path. For his
situation, it hardly makes sense to take the red path, even
though the red path leads to an accumulated shorter distance.

Derived from that, such a concept is usually extended to
robotic planning for navigation, using various cost functions
depending on selected criteria. The generated path ought to
not only regard the shortest Euclidean distance, but also ease
the maneuver of the mobile robot.

A. Robotic Challenges

Most existing navigation algorithms for mobile robots take
advantage of the assumption that the configuration space of
the traversable surroundings is a developable surface. It means
that the map can be simply considered as a two-dimensional
(2D) plane [1], [2] without distortion, or directly projected to
a 2D plane without information loss. It is originated from the
widely-applied representations derived by mature 2D SLAM
techniques [3], such as filtering-based methods [4], [5] or
posegraph-based methods [6]. Such an assumption greatly
alleviates the requirement on detailed analysis of the terrain.
However, the robot ought to deal with the dynamics introduced
from the 3D terrain shape in real environments.
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Fig. 1. Typical scenario that implies rational planning

In recent years, the fast development of 3D mapping tech-
niques [7], [8] and sensors [9] makes the modeling of the
multi-terrain environment feasible [10] and easy to approach
for real applications [11] under task scheduling [12].

As the raw output from these 3D mapping techniques, point-
cloud has been widely studied. The following major aspects
make the analysis on raw point-cloud a challenging problem,
let alone the navigation on it.
• Unreliability of observation: the unreliability is multi-

fold. Outliers, missing points and non-uniform distribu-
tion of points are the major drawbacks of point-cloud.

• Large amount of sparse data: the 3D sensor usually
generates a large amount of points per scan. However,
points are not continuously defined in the 3D space.
The missing information among points, especially latent
structural information, must be recovered by subtle filters.

• Computational complexity: due to the large amount of
data, the high computational cost is a bottleneck.

Because of these challenges, many works try to avoid the
direct operations on points, leading to various representations,
e.g. meshed surface [13] or tree based structures [14].

Despite these difficulties, we tackle the surface modeling
problem using raw point-cloud as input in this paper. It is
because we aim at solving the related problems in real-
time, and the raw point-cloud is the most readily available
representation. In order to cope with the large amount of
sparse data, we adopt tensor voting framework (TVF) [15]
for this study. Respecting with the computational complexity,
we utilize a GPU implementation [16] proposed by us, which
enables the TVF calculation in near real-time. After that, we
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construct a novel local Riemannian metric based on saliency
components of the TVF, which aids the further analysis of the
surface properties and the corresponding tensor field.

As a typical application, we present how such metric can be
used for trajectory planning, for which a functional property
derived from TVF has been adopted. The stick saliency of
TVF indicates the strength of local planarity. This information
is used to help generating a trajectory that can be viewed as a
“rational path”, i.e. try to drive along flat areas, avoid climbing
redundant slops and avoid paths that lead to too much vibration
on the way. The mathematical criteria for the evaluation are
introduced in section V.C.

II. RELATED WORK

A. Tensor Voting Framework (TVF)

Tensor voting [15] is originated in computer vision. It has
been applied to several applications, such as segmentation
[17], [18]. Through these works, tensor voting has shown
its importance in reconstructing missing structures and lo-
cal information registration [19], [20]. We consider it as
one of the most important algorithms for structural analysis,
because it outperforms other methods by its tolerance to
noise and missing data, its consistency for local information
and intuitive extraction of evidence saliency etc. Preliminary
work using TVF for planning has been proposed using a
iterative algorithm over the dense voting grids [21], where
the generated path adapts to smooth local curvature due to the
non-holonomic motion constraints. In this paper, we use the
results from sparse voting directly and consider not only the
shortest distance, also to facilitate the robot maneuver. The
local information is represented by a Riemannian metric.

Nevertheless, the computational cost of tensor voting is
high. The original algorithm has complexity O(N2), where
N is the number of points in the point-cloud. In our previous
work, we proposed a parallel computation, which was further
optimized considering the advanced calculation characteristics
of CUDA, in order to improve calculation efficiency, e.g.
using coalesced memory access, avoiding atomic operation
and implementing online tensor split etc[16].

B. Geodesic on Point-cloud

Provided the surface model, the geodesic calculation is
relatively easy, such as using iterative midpoint search or
approximating by descent gradient [22]. An efficient method
based on contour propagation was proposed in [23]. Mean-
while, several works have put effort to calculate geodesic on
point-cloud. Ruggeri et al. proposed an approximation method
based on energy minimization, regarding errors in local surface
fitting [24]. In our case, the local surface information is
embedded in TVF, which is computationally more efficient
since the voting procedure is linear in time on GPU. Mémoli
and Sapiro explain the intrinsic properties for geodesic on
point clouds, considering the case of manifold sampling [25].

However, all these existing works deal with the point-cloud
only in Euclidean space, i.e. E3, which equips a Riemannian
metric as a rank-three identity matrix. It introduces inherent

drawbacks for robotic navigation, since it assumes the whole
configuration space is linked by straight geometry. In order to
ameliorate that, we define a Riemannian metric in the tensor
space T3 introduced by TVF. The smoothness of such a space
indicates the similarity of local smooth structures instead of
direct distances. By analysing the metric of TVF (T3) in terms
of the direction of eigen vectors, we obtain the weights for
edges of a graph constructed by sample points.

III. TVF AND SPARSE VOTING

Tensor Voting [15] is a computational framework used for
structural extraction based on saliency of basic evidences. It
originated in computer vision problems. King extended its
application regarding point-cloud based terrain modeling and
proposed an optimized stick voting field [20]. Following a
generic pipeline described in [26], we construct sparse ball vot-
ing fields eyes(3), and broadcast it through each neighboring
point by a exponential decay function. For robotics applica-
tions, the kernel size can be chosen as the size of the navigation
footprint. In this work, we omit dense voting process, which
is often performed after sparse voting. Nevertheless it is a
powerful tool for further structural inference when needed.

The collected votes from each point lead to a tensor
containing the neighbouring structural information. The eigen
decomposition of the 3× 3 tensor T can be formulated as:

T = α1ê1ê
T
1 + α2ê2ê

T
2 + α3ê3ê

T
3

= (α1 − α2)ê1ê
T
1 + (stick component)

(α2 − α3)(ê1ê
T
1 + ê2ê

T
2 )+ (plate component)

α3(ê1ê
T
1 + ê2ê

T
2 + ê3ê

T
3 ) (ball component)

(1)

where αi’s are eigenvalues sorted in decreasing length se-
quence, êi’s are the corresponding eigenvectors. The stick
saliency can be represented by λ1 = α1 − α2. The stick
saliency for each point indicates how confident that a point
can be considered as lying on a local plane. The corresponding
tensor, indicating the plane, is characterized by the normal
direction of the local plane ê1.

IV. RIEMANNIAN METRIC EQUIPPED ON TVF
A. Projection and transition function

The embedded manifold M can be interpreted as shown
in figure 2. For each point s in the point-cloud, subjecting
to the local latent surface, a neighborhood homeomorphic
ψ−1 to an open subset in the TVF space. The corresponding
manifold is equipped with a Riemannian metric g, which
determines the inherent relations between two projected points.
Adopting the results from TVF, we build the metric g such
that local roughness of the latent surface can be reflected.
This property is specifically interesting for the use-case of
trajectory planning. Usually, the optimal trajectory is not
necessarily the shortest; instead, the smoothness in curvature
is also important. For example, if the one with the shortest
Euclidean distance passes through rough terrain or induces
complex morphological adaptations, a relatively longer but
flatter trajectory is preferable, considering risks and power
consumption for the robot.
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Fig. 2. Intuition of the embedded local manifold for points in E3. The dashed
line indicates the latent surface, where the points lie on.

B. Metric definition

The Riemannian metric on M is a family of inner products
on each tangent space TpM , such that it depends smoothly on
p, ∀p ∈M . However, the specification of the TpM is trivial if
and only if it possesses a frame of global sections, e.g. a vector
field is defined on M . 1 Therefore, for the case that a tensor
field has already expanded the point-cloud S, the Riemannian
metric g can be arbitrarily defined, as long as it is canonical.

Regarding the components introduced in TVF, we see that
the stick component indicate the flatness of a local latent
surface, with eigenvector expanding êT1 ê1; on the other hand,
the orthogonal plane is expanded by êT2 ê2 + êT3 ê3. Inspired
by the 2D metric introduced in [28] and [29], with symmetric
positive-definite tensors, we propose the following metric:

g(s) := I3 + φ
(
λ1(s)

) (
ê1(s)ê1(s)

T
)

+ψ
(
λ1(s)

) (
ê1(s)ê1(s)

T + ê2(s)ê2(s)
T
) (2)

where I3 is identity matrix; λ1(s) is the normalized stick
saliency and êi(s) indicates the i-th component of the local
tensor for site s derived from TVF. Using the proposed metric,
we intend to guarantee the following two properties:

• A unit vector is along the most desirable curve when the
vector is normal to ê1(s);

• A unit vector is along the most undesirable curve when
the vector is parallel to ê1(s).

For example, if the embedded vector is the control velocity to
the robot, it means that we want to keep the robot move on
flat surface as much as possible; at the same time, avoiding
climbing redundant hills etc. Guided by these properties, we
define the co-efficiencies φ(·) and ψ(·) using the combination
of exponential functions, where we need to ensure φ(x)

ψ(x) is

monotonically increasing and φ(0)
ψ(0) = 1. We set

φ(x) =
ekx

ekx + e−kx
and ψ(x) =

e−kx

ekx + e−kx
(3)

Please notice that the ball saliency is not considered, since the
free points are less of interest for structural information.

1The proof for this proposition is omitted here. The readers are referred to
[27] for details.

C. Distance derivation

Using the proposed metric g, the Riemannian curve length
C is obtained by the integral on M , as shown in equation
(4), where τs defines the direction derivatives on the manifold.
Given the results in (4), the following properties can be drawn:
• The length decreases when the direction of ê1 diverges

from τs, where |τTs ê1|2 indicates the cosine of the
separation angle.

• When the stick saliency λ1 grows, the length decreases,
which coincidently means that the integral path lies on a
flatter surface.

• The local minimal direction is orthogonal to the sec-
ondary eigen vector ê2, where |τTs ê2|2 is minimized.
It implies that the local geodesic is along the ê3 di-
rection (or its opposite) in Ts. This information may
help the exploration task for mobile robots, since the
corresponding direction is the easiest one to approach.
Further discussion is not included in this paper.

• Based on the last item, when the robot is moving in the
direction of ê3, the Euclidean distance is used. Otherwise,
the curve length is greater than then Euclidean distance.

• It does not depend on parameterisation of the curve, i.e.

|C|M =

∫
C

√
τTs g(s)τs ds =

∫
C′

√
τTs′ g(s

′)τs′ ds
′

• It does not depend on coordinates on Riemannian mani-
fold M, i.e.

|C|M =

∫
C

√
τTs g(s)τs ds =

∫
C

√
τ ′Ts g(s)τ ′s ds

• The sum rule of integral also shows the additivity of |C|.
As basic properties of a Riemannian manifold, the proof
of these three last properties is omitted. The readers are
referred to [30] for further discussions.

Though the shortest distance is provided by following local
ê3’s, the geodesic to realize such distance does not necessarily
exist due to physical constraints in E3 space, e.g. the robot
cannot tele-transport. Therefore, we need to define a numeric
solution to generate the feasible optimal path, which best real-
izes the proposed concept. To this end, we adopt the k-Nearest-
Neighbor (kNN) concept which is mostly applied in manifold
learning methods such as Isomap [31]. The projected weights
can then be evaluated in a projected space onto the plane
supported by ê2 and ê3, which are direction vectors in E3. In
the next section, we introduce the typical trajectory planning
for a mobile robot on a point-cloud-based representation.

V. RECIPE FOR PROCESSING POINT-CLOUD

A. Graph construction and distance mapping

A typical application using the proposed model is the tra-
jectory planning on point-clouds. However, the close-form of
planning using the given metric is mathematically intractable.
Utilizing the fact that the local geodesic is along the direction
of local ê3, we propose an accessible approximation shown as
algorithm I, which equivalently maintains the major properties
of the proposed metric of (4):
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|C|M =

∫
C

√
τTs g(s)τs ds

=

∫
C

√
τTs

(
I3 +

ekλ1(s)

ekλ1(s) + e−kλ1(s)
ê1(s)ê1(s)T +

e−kλ1(s)

ekλ1(s) + e−kλ1(s)

(
ê1(s)ê1(s)T + ê2(s)ê2(s)T

))
τs ds

=

∫
C

√
τT τs + |τTs ê1|2 + |τTs ê2|2

(
1

e2kλ1(s) + 1

)
ds

(4)

Algorithm I
ALGORITHM OF TRAJECTORY PLANNING ON POINT-CLOUD

1 Create kNN graph G(V,D), where the nodes are positions of
points si ∈ E3

2 The edgesD is calculated by embedding of Riemannian metric
in Euclidean space, using the fact that a direction along ê3
is preferred. For site si and its neighbor sji , distance dji is
defined as:

dji = |tji |e
1−|tj

i

T
ê3 i|, where tji =

sji − si

|sji − si|
(5)

3 For each query that consists of a pair of starting and ending
points, Dijkstra [32] search is implement on G(V,D).

Considering that g(s) is built in canonical form, following
the discussion in section IV.C, the optimal direction is along
the direction of ê3. By using equation (5), the Euclidean
distance is used in this case. Furthermore, weights among
sites are defined in a way, such that the diversity between
the directions of the path and ê3 is exponentially punished.

B. Metrics for evaluation

In order to validate or compare various algorithms for
trajectory planning, the following metrics can be used.

• Number of site visits: It indicates the number of interme-
diate points along the path. It can also be interpreted as
the shortest distance by considering all weights among
sites are unity.

• Length of trajectory: The accumulated Euclidean distance
of the calculated path.

• Mean-curvature (MC): It is the average of the principal
curvatures at a point, i.e. MC = κ1+κ2

2 . It reflects to
which extent the local neighborhood can be considered
as a minimal surface. Intuitively, it represents the local
flatness. The smaller mean of MC along the path indi-
cates that the path lies on a flatter terrain.

• Gaussian-curvature (GC): It is the product of the two
principal curvatures at a point, i.e. GC = κ1κ2. Formally,
it depends only on the Riemannian metric of the surface.
It represents the local shape change around a point. The
smaller mean of GC suggests less shake on the path.

VI. SIMULATION

In this section we evaluate three related methods on simu-
lated dataset. Each simulated point-cloud is uniformly sampled
from a parametric surface. The three methods are all based on
k-NN graph of point sites, but with different weight definitions.

A. Complex surface

1) Representations: In order to validate the proposed
method in a general case, we evaluate the related methods
on the point-cloud shown in figure 3. It is sampled from a
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Fig. 3. 4000 points sampled from the surface.

latent surface, which is arbitrarily defined. The advantage of a
parametric surface is that GC and MC can be easily derived
[27].

2) Rational path planning: Inspired by the definition of
metric tensor, we consider the trace of the Riemannian metric
g as the local measure of feasibility for a rational path. Greater
trace of g implies a longer incremental curve length, which
further induces more divergence of surface orientation and
curvature. Figure 4 shows the trace of local metric tensor.
Intuitively, the bump areas are equipped with metric of higher
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Fig. 4. Trace of the proposed Riemannian Metric. It indicates the roughness
of the estimated neighbourhood surface, highlighted by color.
trace, which are places that hard to traverse. By arbitrarily
given starting and end point beyond bumps, the calculated
trajectories are shown in figure 5. The primary observation
is that the proposed method (in white) leads to flat trajectory
by actively avoiding the bumps in reasonable fashion, though
with relatively longer path. A summary of the variations in
z (elevation) direction along the path is shown in figure 6.
It can be inferred that the proposed trajectory requires less
adaptation to the terrain, which leads to easier motion or
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Fig. 5. Generated path for different methods. Green: nearest-neighbour search
(21.42); Red: shortest Euclidean geodesic (20.41); White:proposed method
(21.90). The numbers in parentheses indicate the total length of the path.

0 0.2 0.4 0.6 0.8 1
5

5.5

6

6.5

7

Ratio of finished path

H
ei

g
h

t

 

 

k−NN

Euclidean

Proposed

Fig. 6. Height variation along the path for different methods

morphological planning for the mobile robot. Regarding the
energy consumption, it can also benefit from the less variation.

3) Validation by the direction of ê3: The property of the
proposed method by Algorithm I is that it is supposed to
optimize the path by following local ê3 direction as much
as possible. It is because ê3 directs the direction of lo-
cal geodesic, which leads to the most terrain similarity. A
qualitative result is shown in figure 7. The ê3 i directions
are represented by short lines, and the color definition of
paths follows figure 5. We can see that the yellow trajectory
calculated by Algorithm I follows mostly the short lines. A

Fig. 7. Comparison to the direction of local ê3.

quantitative comparison is depicted in figure 8. It shows the
statistics of the absolute cosine values of the path separation
angle to local ê3 along the path. A higher value indicates the
direction is more similar to ê3. It indicates that the proposed

Method k-NN Shortest Euclidean Proposed

# Nodes 39 43 47
Length 21.42 20.41 21.90

mean MC 0.0946 0.0853 0.0578
std-dev MC 0.1208 0.0989 0.0636

mean GC -0.0249 -0.0254 -0.0089
std-dev GC 0.0246 0.0232 0.0116

Table I
STATISTICS OF THE TEST RUN. MC INDICATES MEAN CURVATURE; GC

INDICATES GAUSSIAN CURVATURE.

method fulfills the most coincidence aligning with ê3.
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Fig. 8. Boxplot to show the divergence to ê3 i directions along the path.

4) Curvature statistics: Recalling the metrics defined in
section V.C, the comparison of curvature dynamics is shown
in table I, where the outperforming value is highlighted by
gray background. Despite of the longer traveled length, the
proposed method holds the minimum MC and GC, as they
are the main goal of the design.

VII. TESTS ON REAL DATA

As a sample of use-case, we utilize one of the dataset
introduced by [33] for the test on real data. The scenario is
shown in top-right of figure 9. Notice that the yellow eclipse
marks a fireweed area, which may cause trouble for the robot.

In order to reduce the cost of planning, we sample 10K
points out of the raw point-cloud (around 504K points).
Adopting the GPU implementation of TVF introduced in [16],
the computation time for sparse voting is 24.79ms. Based on
Algorithm I, the calculated path is shown in figure 9. It can
be observed that the cyan trajectory, by the proposed method,
actively avoids the fireweed area, leading to a more rational
path for the mobile robot.

The estimation of curvatures on point-cloud is a subtle prob-
lem. The readers are referred to [34] for curvature estimation
by TVF. The evaluation in terms of GC and MC is omitted.

VIII. CONCLUSION

In this paper, we introduced a Riemannian metric for the
representation of point-cloud, which helps the modeling of the
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Fig. 9. Scene of the experiment and calculated trajectories for various
methods. Green: nearest-neighbour search (24.7m); Red: shortest Euclidean
geodesic (22.5m); Cyan: proposed method (29.3m). The numbers in paren-
theses indicate the total length of the path.

environment, especially aiding the path planning for mobile
robots directly on raw point-cloud. Geometrical properties of
the proposed metric tensor are discussed, which provide hints
for further research related to the modeling problems using
raw point-clouds. The proposed framework is validated by path
planning task on point-clouds, using both simulated data and
real dataset. The results show that the proposed method is
able to calculate rational paths for the robots, which facilitate
the robotic navigation. Comparison and integration with other
robotic tasks are to be carried out in the future.
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