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Abstract—In this paper, we introduce an efficient point-cloud
segmentation algorithm, inspired by efficient segmentation (also
named as super-pixel extraction). It uses parameterised “normal
words” as distance measures, which are obtained by clustering of
surface normals. We estimate the surface normals by the sparse
tensor voting framework, which enables adaptive structural
extraction, even for the case of missing points. The output
result is consist of labeled point representations regarding plane
assumptions, which is validated by metrics based on information
theory. We show the quality of the segmentation results by
experiments on real datasets, and demonstrate its potentials in
aiding 2.5D topological navigation for structured environments.

I. INTRODUCTION

POINT-CLOUD is an important sparse representation of

the work environment for mobile robots. In order to

efficiently use point-clouds, segmentation is the basic oper-

ation required. The output of segmentation is usually used

for various robotics applications such as topological mapping,

semantical reasoning and scene reconstruction. However, it is

in general considered as a difficult problem, especially for the

applications using raw data points. We consider the unreliable

observation primarily hinder the segmentation quality, which

usually consist of the following cases, as shown in figure 1.

• Outliers: The outliers are commonly generated by reflec-

tion surface or sharp edges. The second case is sometimes

called “Shadow-point”. They are the main source of false

recognition for point-cloud based application.

• Missing Points: The missing points are due to different

view perspectives, and usually the main reason for wrong

structural analysis. In this paper, we use tensor voting to

comprehend these missing information.

• Non-uniform Density: It can be affected by different laser

setups. For example, a nodding laser setup and a rotation

laser may lead to different distributions, even in the same

environment. In this paper, we use sampling respecting

with point density to alleviate the drawbacks.

Despite of these difficulties, we choose to use the point-

cloud as the representation, because of the following advan-

tages. First, it is a raw sparse representation. The algorithms

designed on point-cloud do not require preprocessing of the

data, which are usually computationally expensive, such as

meshing or triangulation. Second, the sparse representation
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Fig. 1. Clip of a typical point-cloud and common unreliable observations.

implies that the conducted algorithms can be more efficient,

with less memory and computational cost. Besides, the draw-

backs discussed previously can be solved, at least in part, by

structural reasoning algorithms such as tensor voting. Though

tensor voting is an algorithm with O(n2) complexity, thanks

to our recent contributions [1], it can be executed in near real-

time for typical data size [2].

A. Contributions

We address the following contributions in this paper:

• Following our recent results proposed in [1], stick com-

ponents from sparse tensor voting are taken as the esti-

mation of surface normals.

• We propose an efficient segmentation approach using

clustering result of surface normals.

• Information theory based assessment of point-cloud seg-

mentation, which helps to evaluate the result in quantita-

tive way.

• Evaluation of topological structure extraction for real

point-cloud dataset. A preliminary study of its application

to 3D all-terrain topological mapping is carried out.



B. Arrangement

The rest of this paper is arranged as follows. We start

with introducing related works from different perspectives.

The segmentation algorithm based on super-pixel extraction

by bag-of-normal-words is presented in section III, followed

by the information theory based evaluation and tests on real

dataset in section IV. At the end, we draw conclusions and

introduce our vision for future work.

II. RELATED WORK

A. Segmentation of Point-cloud

Several works regarding point-cloud segmentation have

been proposed. These works are based on different features,

such as edge, projected as from 2D images [3]. Then computer

vision techniques are applied to process the data in 2D. The

main drawback of these works is that they rely on almost-clean

dense representations of the target models for efficient retrieval

[4], which is not for usual robotics applications. Moreover,

the back-forth projection between two representations is time

consuming.

B. Normal based Segmentation

The surface normal is a local consistent feature. Therefore it

is widely used for point-cloud analysis. Regarding segmenta-

tion, one early work by Pulli et al [3] aims at segmenting range

images into homogeneous regions, by decomposing x- and y-

components of the normal vectors. It assumes perfect dense

point-clouds without noise and the resulting algorithm only

deal with segmentation in 2.5D. Normal estimation based on

local constrained least square modeling [5]. Clustering by an

initial segmentation in normal space, then refined in distance

space [6] was proposed by Holz et al. Teutsch et al presented a

clustering algorithm for subset segmentation [7], which aimed

at the segmentation of point-clouds without plane-assumption.

[8] introduced an incremental way to model different clusters

by using both angular and distance constraints. We propose to

firstly perform clustering algorithm on normal directions [9],

which can be seen as prerequisites for further segmentation of

point-clouds. It alleviates further computation of normals.

C. Information Theory

For most clustering algorithms, such as spectral clustering

[10] or K-means, the target number of clusters of input data is

a key issue, which has been extensively studied in [11]. Some-

times it is named as the cardinality of segmentation. Though

several adaptations are proposed for specific applications such

as self-tuning spectral clustering [12], this problem persists in

general. In order to eliminate the dependency on cardinality,

usually information theory can be adopted. In our previous

work [13], we proposed a segmentation algorithm using Chow-

Liu decomposition of the mutual information tree. When local

constraints can be defined, the cardinality can be taken as

parameter of global entropy maximization. Mutual information

has been proved to be an optimal clustering criterion [14] for

such setup. In this work, we introduce a modified Akaike Infor-

mation Criterion (AIC) [15], regarding the effect of different

cardinality, using efficient segmentation [16] to maximize the

global entropy to obtain optimal clustering results.

D. Tensor voting

Tensor voting [17] is originated in computer vision. It has

been extended to several applications related to segmentation

[18], [19]. Several works have been proposed on structure

extraction of point-clouds using Tensor voting as well [20],

[21]. We consider it is one of the most important algorithms for

structural analysis, because of its extraordinary performance

in tolerance to noise and missing data, its consistency for

local information and intuitive extraction of evidence saliency,

etc. Nevertheless, the computational cost of Tensor voting is

high. Thanks to the CUDA based tensor voting open-source

library, which we recently proposed [1], the algorithm is able

to launch in near real time. As result, both surface normals

and geometrical saliency can be extracted efficiently.

E. Topological mapping

Autonomous navigation in 2.5D terrain for mobile robots

is a very hard problem in general [22], [23], especially

when a raw point-cloud is used. However, it is feasible and

lower requirements on computation when a topological map

is conducted [24], [25]. Segmentation, as the main technique

for topological mapping, is the basis for these point-cloud

based applications. Several work deal with the extraction of

topological regions from metric maps. Intuitively, a topological

map is defined as a graph structure, which is composed of

nodes and linkages among them. We follow the definitions of

nodes as interesting regions such as that in [26], [24], [13],

[27], namely region-based topological maps.

III. SEGMENTATION ALGORITHM

The proposed algorithm pipeline is shown in figure 2. The
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Fig. 2. The pipeline of the proposed algorithm

density based sampling helps to maintain the stableness of



tensor voting, for which readers are referred to [21] for more

details. Using sparse voting, the local tensor field for the

neighborhood of each point can be decomposed into “stick”

“plate” and “ball” saliency, with corresponding eigenvectors as

shown in (2). We use the stick components as approximation

of local normal directions. Inspired by the classical bag-of-

word [28] model, we first build a so-called “normal word”

by k-means, then use these words as inputs for efficient

segmentation [16] algorithm. The clustering result is validated

by AIC information criteria shown in (9).

A. Surface Normal estimation by tensor voting

We propose to use tensor voting as the primary algorithm

to estimate [21] surface normal. It allows us to adapt to the

terrain structure in a more flexible way, by varying the kernel

size σ of the sparse voting field, such that:

Decay(d, σ) = e−
d2

σ2 (1)

where d is the Euclidean distance between a pair of voter and

votee. A typical voting result T3x3 for an arbitrary point-cloud

can be decomposed as follows.

T = λ1ê1ê
T
1
+ λ2ê2ê

T
2
+ λ3ê3ê

T
3

= (λ1 − λ2)ê1ê
T
1
+ (stick component)

(λ2 − λ3)(ê1ê
T
1
+ ê2ê

T
2
)+ (plate component)

λ3(ê1ê
T
1
+ ê2ê

T
2
+ ê3ê

T
3
) (ball component)

(2)

where λi’s are eigenvalues sorted in decreasing length se-

quence, êi’s are the corresponding eigenvectors. We use the

stick component ê1 from (2) as a normal estimation for local

planes. The readers are referred to [17] for more details

regarding tensor voting.

Upon different applications for the robot, the voting kernel

size can be chosen differently. In figure 3, we show different

results by changing voting kernel size σ for the side view of

the point-cloud in figure 1. The green rectangle in figure 3(b)

highlights the area of a section of stairs. We can see that for a

(a) Surface normal estimation by ten-
sor voting σ = 0.1m

(b) Surface normal estimation by ten-
sor voting σ = 0.5m

Fig. 3. Different results by varying kernel size σ

bigger σ, the structural information can be easily smoothed

and refined. In practice, the kernel size is chosen as the

navigation footprint of the robot. However, the computational

cost of tensor voting is high (O(N2)). In order to alleviate

that, we use an existing GPU based tensor voting computation

framework for surface normal calculation in [1], by which we

can get surface normal per point in real-time.

B. Clustering of surface normals

We have the assumption that the structured environment is

composed of major planes. Regarding the structural smoothing

introduced by tensor voting, the definition of planes is flexible.

It means that by adapting the size of the voting kernel,

continuous stairs can be considered as planar as well. This

assumption is very helpful to extract topological models of

given structured environment, with potential applications such

as topological navigation for all-terrain robots which will be

discussed in section V.

Taking the surface normals resulted by tensor voting, the

clustering result of surface normals, using partially the dataset

shown in figure 1, is illustrated in figure 4(a). Although it

is a small dataset for this specific test, the major features

and advantages of the proposed algorithm are to be revealed

and compared in section IV. By back-projecting the clustering

results, we obtain a clustering result of the raw point-cloud

shown in figure 4(b). Figure 4(a) and 4(b) show the same

clustering result in normal direction space and Euclidean space

respectively. This intermediate result leads to clean separations

of normal directions (including the smoothed stair structure

as Cluster 5). The next problem is how to further divide the

point-cloud into separate planes. Because the cardinality of

the clustering is unknown, a rational segmentation algorithm

independent of this cardinality information is required.
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C. Efficient segmentation inspired algorithm

As discussed previously, the cardinality of clustering is a

general issue. Several works investigated and reasoned for a

proper cardinality from the data perspective [11] and Bayesian

tests such as Bayesian Information Criterion (BIC)[29]. How-

ever a bad parameter selection will corrupt the result easily as

described in [30]. The efficient segmentation proposed in [16]

avoided this problem from data perspective, which considered

each data point as a vertex in graph, and starting with one

cluster per data point. This algorithm is highly efficient when

the distance between data points and clusters is simple or

homogeneous, such as color for pixels in the original work. As

far as point-cloud is concerned, the output of surface normal



estimation by tensor voting greatly smoothed out the noise,

resulting a uniform distributed feature space. Therefore, it

is possible to follow the idea of efficient segmentation for

point-cloud clustering. Compared with the most related work

[31], we use more robust criteria to assess similarities between

points; the proposed normal based features allow the clustering

in area with non-uniform distribution, which is not applicable

for other similar approaches. The efficient segmentation is

summarised in algorithm 1, where MInt is the minimum

internal difference function [16]. kNN is the number of

nearest neighbours considered in the normal estimation. Please

refer to [1] for more details about the effect of kNN to the

estimation precision.

Algorithm 1 Generic Efficient Segmentation

Data: Pointcloud P = {p1, . . . , pi, . . . , pn}
Surface normals N = {n1, . . . , ni, . . . , nn}
Result: Cluster identity for each point

function GENERATEGRAPH(P )

Graph G = (V,E),
node set V = φ, edge set E = φ

for all pi ∈ P do

V ← node pi
kNNi ← kNearestNeighbours(pi, P )

for all b ∈ kNNi do

E ← edge e = Distance(b, pi)
return G

G(V,E) = GENERATEGRAPH(P )
sortedEdges = sort(E)

build 1-element component ci for ∀pi
repeat

for all ej ∈ sortedEdges do

(uj , vj)← ei
s← cuj

t← cvj

if s! = t & ei ≤MInt(s, t) then

FUSECLUSTER(s, t)
UPDATECLUSTERLABELS(ej)

until Converge

Filter Results by fusing small clusters into bigger one

return Clusters c1, . . . , cK

The definition of the distance function is the primary design

issue, since efficient segmentation is scale sensitive. It means

even with the same distance measuring function, scaling

on measurements may lead to different results. Comparing

with different distance functions, such as radius difference

of normal directions, degree difference, exponential of the

differences, we find “degree difference” is an optimal criterion,

by which the distance function is defined as:

∆(−→u ,−→v ) = mod

(

rad2deg(arccos
−→u · −→v

|−→u ||−→v |
), 180

)

(3)

where −→u , −→v are normal directions for two arbitrary points in

the point-cloud. By manually tuning parameters, the optimal

result after filtering is shown as figure 4(a).

We could see that several extra batches within same region

are extracted. The major difficulty is that the distance function

is hard to select, adapting with regional efficiency MInt(s, t)
described in algorithm 1. We consider that the ideal case is

that the distance function is symbolically defined, by which

the neighbours can be equally treated. In order to achieve that,

we use the normal clustering results by k-means in figure 4(b).

The modified distance function can be defined as:

Distance(−→u ,−→v ) =
{

∆(−→u ,−→v ) ∈ (0,+180),−→u ,−→v with same normal word

0, otherwise

(4)

The result is shown in figure 4(b). We could see that the

number of final clusters K is greatly reduced. Quantitatively,

in the next section, we use information theory to assess the

quality of the result, and determine the optimal K, based on

non-parametrical density estimation.

IV. INFORMATION BASED VALIDATION

Clustering is a NP-complete problem, which is able to be

evaluated by a quality score. We consider the segmentation

problem as distributional clustering. It means that each point is

described as a distribution. The relative entropy then becomes

a natural measure of the distance between distributions. Given

such a choice, mutual information has been proved to be an

optimal clustering criterion [14]. The clustering of point-cloud

P = {p1, p2, . . . , pN} into K clusters is a function:

C : P → {1, . . . ,K}

K is sometimes named as the cardinality of the clustering

results as well.

By introducing clustering function C, the data points are

better organized. We want to maximize this optimization. In

other words, we want to maximize the mutual information

between raw point-cloud and the clustering, namely I(P,C).
Based on information theory, the mutual information can be

further representation by I(P,C) = H(P ) − H(P | C). In

general, the goal of clustering is to maximize the divergence

between clusters and minimize the “dynamics” within the

same cluster. In this case, H(P ) is determined with the raw

data, therefore independent on any specific clustering. The

target problem is thus converted as an optimization problem,

respecting with the minimization of a score as:

SMI(C) = H(P | C) =

K
∑

k=1

nk

N
H(P | C = k) (5)

where nk is the number of points assigned to cluster k, N is

the total number of points. Score SMI describes the average

entropy of the data points from clustering function C. For an

optimal clustering C, the score will be minimized, resulting

in maximized mutual information I(P,C). The intra-cluster

entropy of points pk’s assigned with cluster k:

H(P | C = k) = −

nk
∑

pk

p(pk | C = k) log p(pk | C = k) (6)
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Fig. 4. Clustering results using efficient segmentation (a)(b) and k-means (c) on the same structured dataset (after density based sample: 2588 points). A
lower SAIC indicates a better result.

We must notice that the distribution of the clustered points

p(pk | C = k) is non-Gaussian, nor uniform etc. It depends

on the sparse representation of point-cloud in the 3D space.

Therefore, parametrical modeling based on Expectation Max-

imization (EM) etc. are not applicable in this case. We need

to use a non-parametrical approximation of this entropy.

A. Non-parametrical approximation of intra-cluster Entropy

Faivishevsky et al proposes a non-parametrical information

clustering (NIC) estimator using MeanNN differential entropy

[32], which leads to an inter-cluster entropy estimation that

can be summarized by:

H(X | C = j) ≈
d

nj(nj − 1)

∑

i 6=l|ci=cl=j

log ||xi − xl|| (7)

where || · || is the Euclidean distance between two datapoints

xi and xl (in R
d). Please notice that it does not require the

intra-cluster distribution as spherical Gaussian. We can rewrite

equation 5 in the NIC form as 1:

SNIC(C) =
1

N

∑

b

3

nk − 1

∑

i 6=l|ci=cl=j

log ||xi − xl|| (8)

One major limitation of (8) is that it can only determine

the quality of a segmentation with given cardinality. Inspired

by the discussion of Akaike Information Criterion (AIC)

in chapter 16 of [15], the clustering cardinality K can be

embedded in the NIC cost function as part of evaluation,

resulting in the AIC score as follows:

SAIC(C) = SNIC(C) + ψK (9)

where ψ is a weighting factor of the influence of variation of

number of clusters K. In this work, it is empirically chosen

as 0.1. A smaller AIC value indicates a better segmentation in

statistical meaning. We compare the score with three different

1In the original paper [32], the 1

N
nominator was missing.

algorithms on the same dataset as shown in figure 4. We could

see that the proposed algorithm shown the best quality in figure

4(b). Intuitively, the walls and stairs are correctly clustered.

On the contrary, the distance metric by (3) leads to too many

small clusters, due to difference of local normals. The results

of k-means shown in (c) are not interesting since the clusters

are gathered blobs that only lie in Euclidean space.

Moreover, considering the state-of-the-art, RANSAC is of-

ten used for plane extraction [33], [34]. Usually RANSAC

based method is optimal for single module detection. However,

it may cause problem under condition of multiple planes that

largely crossing-over by each other. For comparison, we adopt

the implementation by Zaman [35]. By carefully tunning the

parameters 2, we obtain the best results that may make sense as

shown in figure 5. We have the following observations: First,

Fig. 5. Result by RANSAC based plane extraction SAIC = 0.372.
Please notice that the points highlighted by blue eclipse indicate the inherent
drawbacks of RANSAC based method.

though major planes are detected after parameter tunning, the

2Optimized parameters: the smallest number of supporting points is 60; the
threshold for point fits is 0.1 meter.



small clusters exist on the right side of figure 5. Second, as

an inherent characteristic of RANSAC, whenever points that

fit assumptions of a pre-detected plane, such as the magenta

points highlighted by the blue eclipse, will be assigned as the

same plane. This is the major drawback of RANSAC based

methods comparing to the proposed algorithm. Third, even

with the same set of parameters, randomness of the results can

be observed, because RANSAC is based on sampling and the

selection of initial points is deterministic. Last but not least, the

proposed algorithm largely outperforms for the case of stairs,

where the points are considered as the same “normal word”

from the tensor voting results. These observations further

confirm the advantages.

V. CONCLUSION

We described a point-cloud segmentation algorithm com-

bining surface normal clustering and efficient segmentation

algorithm. We also proposed a AIC-based criterion to assess

segmentations quantitatively, by adopting information theory.

We could see that the proposed algorithm provides clean and

robust segmentation results, even in the case of unreliable

point-cloud sensor readings. As a sample use-case, preliminary

results for the topological mapping in a small scale were also

introduced, indicating the potential for next research steps of

navigation on point-cloud. Full topological navigation for all-

terrain mobile robots will be discussed in the future.
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