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Abstract—In this paper, we develop a way to accurately and
precisely estimate the pose of a calibrated camera with a single
picture which includes a known planar object. For the proposed
algorithm, we first use SURF detector for feature extraction and
matching. Then, we use the information from known reference
image to retrieve 3D point coordinates. Based on resulting 2D-
2D correspondences and 3D coordinates, multiple-view geometry
constraints are adopted to calculate the camera pose. Com-
paring with previous work, the proposed algorithm introduces
an advanced feature selection algorithm, which eliminates pose
ambiguity and improve the pose estimation result. The feature
selection algorithm is based on the assumption that most 3D
feature points should be coplanar. We conduct tests on traffic
sign and evaluated the test results. The test results show that pose
estimation with standard RANSAC turns out to be ambiguous
occasionally. Conversely, the estimation with the proposed feature
selection strategy leads to high robustness and accuracy.

Index Terms—Multi-view geometry, Feature selection, Local-
ization with monocular vision.

I. INTRODUCTION

In computer vision, one of the classical problems is to
localize accurately and precisely where a photo or video was
taken. It has a broad range of applications, including consumer
photography, robot localization, and autonomous navigation.
It is the basis for visual SLAM problems and reconstructions.
This paper focuses on exploring the approaches to accurately
and precisely estimate the camera pose from known planar
object using a single monocular camera.

The camera pose estimation problem can be formulated as
follows: Estimate the attitude and position of the camera with
respect to the world frame from feature point correspondences.

Several approaches for pose estimation are known in former
works. Most of them work for arbitrary 3D points cloud,
some extended to use line features [1], points and lines [2],
and some also focus on coplanar points [3], however with
limited validation. In most cases, RANSAC [4] algorithm is
implemented in the pose estimation process, trying to classify
outliers and inliers robustly and thus to improve the pose
estimation result. However, due to the random feature selection
strategy adopted in RANSAC, the estimated pose is vulnerable
to ambiguity. For planar object, it is possible to develop more
stringent criteria to select features for pose estimation and
eliminate pose ambiguity.

A. Related work

Monocular vision based localization have been widely stud-
ied. The algebraic solution to PnP [5] problems provides
the way to estimate camera pose based on n pairs of 2D-
3D point correspondences. Most approaches use feature point
detectors and matching themes to associate 2D points in
the image plane with corresponding 3D points in 3D space.
Lowe and Skrypnyk [6] propossed a classic system based on
the SIFT descriptor for object localization, but computation
expense imposes serious problems. More efficient detectors
such as SURF [7] provides approximate performance with
faster computation speed. These keypoint-based methods are
widely applied in robotic applications such as visual homing
based navigation [20]–[23] and scene recognition problems
[24], [25]. However, one of the shortcoming of most feature
descriptors is that they provide false matches. Considering
those false matches which will influence the pose estimation
result drastically, RANSAC algorithm is usually to be applied
to classify outliers and inliers. Otherwise, random feature
selection policy adopted in RANSAC algorithm will inevitably
introduce ambiguity when used to estimate camera pose.
Inspired by these observations, we propose an advanced point
feature selection algorithm based on 3D analysis.

Several works on pose ambiguity can be found in literature.
Denis Oberkampf [3] analyzed the pose ambiguity caused by
large ratio of camera focal length over object depth. Lu [8]
searched the way to eliminate pose ambiguity from video
images. Haiwei Yang [9] considered pose ambiguity caused
by limited number of feature points or special configuration
of object points. In this paper, we explore the way to estimate
camera pose robustly for localization with monocular vision,
where feature points are relatively abundant and randomly
distributed. We mainly attend to address the pose ambiguity
problem which results from false feature points detected by
error prone feature point detector such as SURF and random
feature selection policy adopted in RANSAC algorithm.

Normal vector describes 3D geometric properties [26], [27]
and can be used to assist point cloud segmentation efficiently.
Point cloud clustering based on normal vectors has been
applied in lots of previous work. Sagi Filin [10] used normal
vector to segment point cloud obtained from laser scanning
data and Rabbani T. [11] used local surface normals to
segment point cloud. Further segmentation methods such as
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mutual information based [28] or Markov Process based [29]
segmentation was also reported . This paper adopts normal
vector voting strategy to segment discrete 3D point cloud. In
this method, the neigborhood of each point act as voters to
determine whether this point is coplanar with them or not.

II. METHOD

A. Algorithm in Outline
Figure 1 shows the proposed method of this paper in an

outline.
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Fig. 1. Research method outline

Given a reference image and a test image which is currently
taken by the device, we first extract SURF features and com-
pute possible correspondences using nearest neighbor match-
ing of the descriptors along with a distance ratio threshold.
For faster nearest neighbor queries on the descriptors, we use
the Fast Library for Approximate Nearest Neighbors FLANN
[12], which is publicly available. RANSAC with adaptive
termination criteria will be used to eliminate outliers. Camera
pose is estimated by solving PnP problem [5], [17]–[19]. In
this paper, the reference image was taken from a known pose,
hence 3D coordinates of the points on the planar object can
be retrieved.

Because the object is planar, once the 3D feature points are
reconstructed, we can examine whether they are coplanar or
not and thus to classify proper and improper feature points.
After initial pose estimation, we then use triangulation method
[14]–[16] to reconstruct 3D points based on the data from
two images and the initial pose estimation result. If most
reconstructed 3D feature points lie on the same plane, the
initial pose estimation result should be correct. On the other
hand, if lots of 3D feature points are not coplanar, we can
conclude that the initial result is prone to be wrong. In
this case, we will come back to the pose estimation step
and conduct a new iteration to improve the result. These
observations show that the key of a reliable feature selection
algorithm is to define a robust criteria to guarantee that all
points are coplanar.

Before getting into the proposed framework, we would like
to give a short tutorial and compare several existing techniques
for pose estimation, and indicate the necessity for feature
selection.

B. Absolute pose estimation algorithm

For this algorithm, the coordinates of 3D points on the
planar object is calculated in a straightforward manner. Once
we know the pose of the camera center C and every projection
ray direction (fi) of each corresponding point on the plane,
the 3D point (pi) can be determined as the intersection point
between projection ray and XY plane in world frame as shown
in Figure 2.

R&T  Known

Referrence 
imagefi

pi(x,y,0)

C

O

Fig. 2. Retrive 3D point coordinates based on reference image

The rotation and translation from world frame to the ref-
erence image camera frame can be therefore reconstructed.
We assume the rotation matrix is R and the translation vector
is T = [Tx, Ty, Tz]

T . For every unit projection ray vector
fi = [fix, fiy, fiz]

T , we define the scalar s as:

s = − Tz

fiz
(1)

Then for every projection ray, its corresponding 3D points
on the planar sign is:

pi = s ∗ fi + T (2)

Basically, for every projection ray, its corresponding 3D
point on the planar object can be uniquely determined. Once
the 3D coordinates of the points on the planar object is
obtained, and we get image points pairs between reference
image and query image, the following step is to compute
absolute camera pose. Given the intrinsic parameters of a
camera and a set of 2D-to-3D point correspondences, the
problem of determining the absolute position and orientation
of the camera is known as PnP problem, which provides us
a method to estimate camera pose based on paired 2D image
points and 3D points. The minimal number of points pairs
needed to estimate the camera position and orientation is three,
considering a fully calibrated camera.

Inevitably, the pose estimation result highly depends on
the result of feature matching. We need at least five positive
matches to recover unique pose. If the query image is blurred,
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the result is less likely to be right. For those planar object
which is highly symmetric and contains limited amount of
texture, feature matching is prone to making even more
mistakes.

C. 3D point coordinates reconstruction algorithm

Because the object is planar, if we reconstruct 3D points
of the features, most of them should be coplanar. Here, we
use triangulation method to reconstruct 3D points coordinates
based on the information from both query image and reference
image. The algorithm is shown as Figure 3.
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Fig. 3. Reconstruct 3D points using triangulation method

Using classical absolute pose estimation matrix, we can get
an initial result (rotation matrix Ri and translation vector Ti

from the world frame to query image camera frame). Given
that the reference pose is known as a priori (rotation matrix
Rr and translation vector Tr from world frame to reference
image camera frame are known), the rotation matrix R and
translation vector T from the reference image camera frame
to query image camera frame can be easily computed:

R = R−1r ∗ Ri (3)

T = Ti − Tr (4)

For every 3D feature point, its corresponding projection
rays from two images can be obtained based on projective
geometry. Once every point’s corresponding projection ray
(~fi,~f ′i ) is known, and the rotation matrix R and translation
vector T from world frame to reference image camera frame
are feasible to compute, by which we can reconstruct the 3D
coordinate of every feature point using triangulation method.

D. Normal vector of feature points

In this section, we assume that the number of positive
feature points is more than 9 1. For every 3D feature point,
we choose its k (k = 8) nearest neighbors to vote whether it
is coplanar or not. A plot in 3D space is shown as figure 4:
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Fig. 4. Computation of normal vector for a feature point

For a feature point p, it has 8 nearest neighbor feature
points p1, p2, p3...p8. Assuming that after 3D reconstruction,
the coordinate of the point p is [x, y, z]T and its nearest
neighbors’ coordinate are [xi, yi, zi]

T for neighbour point pi.
Let 3× 8 variation matrix H be:

[(p1 − p) (p2 − p) (p3 − p) ... (p8 − p)] (5)

Then the 3× 3 Covariance Matrix C is derived as:

C = H ∗ HT (6)

The normal vector of point p is the unit eigenvector of the
matrix C with the maximum corresponding eigenvalue. Every
feature point obtained from the triangulation method will have
a corresponding normal vector though the above steps. This
can be shown as Figure 5.
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Fig. 5. Normal vector of every feature point

Therefore, coplanar points should have normal vectors that
point to the same direction (or opposite). As the object is
planar, if the initial result (rotation matrix Ri and translation

1It is related to the number of neighbours to be taken as reference. The
number must be bigger than 3, in order to provide enough constraints on
planar geometry.
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vector Ti from the world frame to query image camera frame)
is correct, most points should lie on the same plane and
thus have normal vectors pointing to the same direction (or
opposite), improper features should have normal vectors that
point to an arbitrarily different direction. Thus, we can classify
features according to their normal vectors. A typical example
is sketched as the red point in Fig 5. The detailed algorithm
is explain in the next subsection.

E. Feature selection process

The process is explained as follows. After calculation of
normal vectors of each feature, we extract their median normal
vector, and compute the dot product between each normal
vector and the median normal vector which represents the
cosine from each normal vector to the median vector. Because
most feature points should be coplanar, the deviation should be
small. And those feature points with relatively small normal
vector median normal vector dot products is improper and
thus should be erased in pose estimation process. The feature
selection process can be shown in Figure 6.

Normal 
vectors

Extracted the 
median vector

Evaluation
of the dot 
product

Pose 
estimation

erase  improper feature

Final pose Close to 1?Y

N

Fig. 6. Flow chart of feature selection process

After improper feature point erasion, most feature point that
take part in the pose estimation procedure should be positive,
thus the result would be accurate and robust.

III. EXPERIMENT

We carried out tests with the Vicon motion tracking system,
which provides sub-millimeter precision on 3D ground truth.
We took 15 images of a stop traffic sign from 15 different
poses and chose one of them as reference image (the pose
where we took this reference image is assumed to be known
and thus can be directly used). What we want to do is to
estimate the other 14 camera poses using the information from
reference image and query image. Some of the test images
have high pixel noise, and some was taken from distance or
large angle. The estimated camera poses can be expressed by a
3×4 matrix which denotes the rotation (the first tree columns)
and translation (the last column) from the object frame. We
estimate 14 camera poses separately with standard RANSAC
algorithm and with feature selection strategy developed in this
paper. The comparative results are evaluated afterwards.

The test method is illustrated in Figure 7. First, we use
standard RANSAC algorithm to calculate the camera pose.
When the query image is taken quite far away from the
reference image, there might be only a few matched points
after SURF, and the result might be vulnerable to ambiguity.

Fig. 7. Experimental Design

Test results of 100 times experiment using the test image 9 in
Figure 7 is shown as Figure 8.
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Fig. 8. Test result before feature selection

The ground truth of the test is:

T = [Tx Ty Tz]
T = [0.140 0.7593 1.133]T

R = [roll yaw pitch]T = [−1.433 3.213 203.495]T

In this case, about 20 out of 100 test times, the estimated
result jumps to a totally wrong value, which is far from
satisfactory.

When the proposed algorithm is implemented, theoretically,
most feature points will be coplanar after feature selection and
thus the dot product between each normal vector and their
median vector should be close to 1 or -1.
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We classify proper and improper feature points according
to the absolute value of the dot product. Therefore, after
feature selection, the dot products (absolute value) distribution
should lie close to one with small variation. The comparative
results of the dot products (absolute value) before and after
feature selection are shown in Figure 9. We see that after
erasion of improper feature points, dot products (absolute
value) distribution lies closer to 1 with smaller variation.

Fig. 9. Dot products distribution

The comparison between the pose estimation result with
feature selection and that without is shown in Figure 10.
Comparing with the result of standard RANSAC in Fig. 8,
we see that the false pose estimations have dropped from 20
to 6. It means the pose estimation precision rises from 80%
to 94%.

Moreover, from the test result, we see that the proposed fea-
ture selection strategy can not only eliminate pose ambiguity,
but also improve pose estimation result of query images with
high pixel noise. The comparison between the test result of
query image in the presence of high pixel noise with feature
selection and that without are shown in Figure 11.

The ground truth of the test is:

T = [Tx Ty Tz]
T = [0.160 − 0.185 2.113]T

As we can see, in the presence of high pixel noise, feature
selection strategy developed in this paper can make the result
more robust and accurate.

IV. DISSCUSION

From above experiment result and further analysis, we
can see that if there are serious pixel noise, the initial pose
estimation result will not be reliable. Especially, if the number
of feature points is limited and only a part of them are proper
feature points, pose ambiguity imposes a serious problem.
After looking carefully into the pose estimation process, the
reason can be easily found out. SURF result provides large
amount of improper matches which will influence the pose
estimation process drastically. In order to classify inliers and
outliers, RANSAC algorithm needs to be applied for auto-
matic processing of point cloud with the aim of 3D building
modeling. But model fitting approaches will possibly provide
spurious segmentation result when dealing with different point
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Fig. 10. Test result comparison

cloud sources. As a result, pose ambiguity will occure if
we fail to find an efficient way to segment point cloud in a
proper manner. Advanced feature points selection strategy can
assist accurate pose estimation and improve final result. The
feature selection strategy developed in this paper proves to be
reliable and robust because normal vector of each feature point
provides a safe indicator of the properness of each feature
point. As shown in the experiment and its result, after elaborate
feature points selection process developed in this paper, fewer
improper feature points will take part in the pose estimation
process, the final result is more likely to be robust, accurate
and precise.

V. CONCLUSION

In this paper, we proposed an advanced feature selection
algorithm and showed its application in pose estimation prob-
lems. In general, pose estimation results by only using standard
RANSAC are fair. It means that if the query image is taken
near to where the reference image was taken, the number of
feature point is high enough to get satisfactory pose estimation
result. However, if the resolution of the query image is low,
the pixel noise might be too serious to conduct pose estima-
tion. In this case, the pose estimation result is not robust
and only the translation along focal axis is not sensitive to
noise. Moreover, if the number of feature points is limited
and contains improper ones, the problem of pose ambiguity
may occur because RANSAC algorithm initially randomly
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Fig. 11. Test result comparison of image in the presence of pixel noise

chooses feature points to fit model. Pose estimation with
feature selection strategy developed in this paper addressed
above problems and improved the estimation result in a great
deal. The result is highly robust even with presence of high
pixel noise or limited number of proper feature points.

Real world applications may include but not limit to:
localize smart phone users in large indoor environment though
taking a photo of a known planar object.
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