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Abstract—Localization is one of the fundamental problems for
mobile robots. Hence, there are several related works carried out
for both metric and topological localization. In this paper, we
present a lightweight technique for on-line robot topological lo-
calization in a known indoor environment. This approach is based
on the Generalized Voronoi Diagram (GVD). The core task is to
build local GVD to match against the global GVD using adaptive
descriptors. We propose and evaluate a concise descriptor based
on geometric constraints around meeting points on GVD, while
adopting Hidden Markov Model (HMM) for inference. Tests on
real maps extracted from typical structured environment using
range sensor are presented. The results show that the robot can
be efficiently localized with minor computational cost based on
sparse measurements.

I. INTRODUCTION

Autonomous robots need to determine its position within its
work space, answering the question “where am I?”. Localiza-
tion, a process that calculates the position of a mobile robot
relative to its environment, is the foundation to perform other
common tasks. Hence, the research on robot localization has
received considerable attention.

In general, there are two main categories to represent the
environment recognized by range finders: metric-based and
topological approaches. As for the metric-based approach,
geometric entities of the environment are represented by the
exact locations with respect to a reference frame, and the
localization is achieved by obtaining the accurate coordinate
index of the mobile robot [1], [2], [3]. On the other hand,
the topological approach represents environmental entities as
a graphical model composed by nodes and edges [4], [18],
[6], [7]. The nodes are usually extracted from places with
salient features, while edges among the nodes determine the
connectivity. For vision based approaches, the localization is
mostly achieved by feature matching and geometrical trian-
gulation [19]. In this proposed approach, the localization task
aims at finding the topological region [8], [23] to which the
current robot pose belongs. It is closely related to topological
decomposition problem [6]. This goal may sound vague,
however it is good enough for local environment modeling
tasks e.g. local pointcloud based semantic mapping [22] or
local data retrieval [26], [25].

Furthermore, comparing with explicit metric localization,
the proposed scheme requires lower computational cost, and
is easier to recover for map lost. The occupancy grid map
[9], feature-based methods [10] and appearance-based maps
[20] are typical examples of explicit metrical localization
approaches. However, to implement the precise localization,

the autonomous robot has to handle large amount of redundant
information. Contrarily, due to the compact and abstracted
scheme, a topological localization approach can massage the
required data more easily as we previously discussed in [21].

This work addresses topological localization by using
GVD[4]. An environment model is first created, which in-
volves partitioning the Voronoi graph into several topological
subregions. Then the robot can try to localize by comparing
the local Voronoi diagram with the global one. The Voronoi
diagram is directly calculated based on the grid map obtained
from range sensors. At the same time, the topological nodes
are defined according to the structure of the Voronoi diagram.

The rest of this paper is structured as follows. In the
section II, state of the art will be discussed and compared.
In section III, we propose a topological segmentation method
based on global GVD map. Then geometrical information
based descriptor for GVD in section IV. It is evaluated and
parametrized by sample GVD in section V. In section VI, a
Hidden Markov Model is proposed for the inference of the
model, followed by experiments for the proposed method and
discussions. Finally, we conclude in section VI.

II. RELATED WORK

A. Topological localization

Due to the advantage of huge reduction in both the space
and time complexity, topological localization is widely studied.
They can be characterized by different methods of feature
extraction. One popular example is based on a sonar grid map
[8]. In this method, localization is performed by comparing the
current local grid map with the grid map constructed during
the modeling procedure. Though topological model can be
quickly extracted from a grid map by using cell decompo-
sition and normalized graph cut, there is a big limit that the
region segmentation is rather unstable. This is because spectral
clustering was adopted for topological region segmentation.
Even predefined the number of regions to divide, results
can vary occasionally. In our previous report, the conducted
problems were detailed analysed [23]. Brunskill et al proposed
a localization approach based on boosting over a set of local
features extracted from raw laser scan [11]. They create the
topological map based on second largest eigenvalue of spectral
analysis, which lead to large and non-organized topological
segmentation. Blanco et al used a naive local pattern-matching
algorithm for GVD matching [12], which is infeasible to adapt
to rotation. Another Voronoi localization algorithm is to use
stochastic mapping [13]. Comparing with that, we use HMM
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in this paper to refine the matching sequence. A widely cited
method was proposed by Choset et al [4], [14]. However, the
global refinement was not dealt with. In this work, we use
Viterbi algorithm to refine the final output.

Other less related approaches are to use multi senor features,
e.g. extracted from the images obtained via an omnidirectional
camera. Mostly, two types of feature namely global features
extracted from whole image and local features obtained from
subregions are considered [15]. This concept is adopted in
GVD descriptor extraction in our approach.

B. Voronoi Diagram and further application

The Voronoi diagram (VD) and GVD are both geometric
structures formed by sets of points in Rn(in our application
R2). It consists of a set of points that have at least two
minimally distant sites in terms of Euclidean distance. All
points which are not part of the VD are closest to exactly
one particular point obstacle. It is composed of line segments
and half-lines, which are both formed of points with exactly
two equal minimal distance to the point obstacles. These lines
meet at so-called meet points, which have at least three equal
minimal distance to the point obstacles. The GVD extends
the idea of the VD from point obstacles to a set of arbitrary
geometric objects(e.g.,lines,arcs). There are many applications
based on the VD and GVD. Since the definition of VD
guarantees that robots can stay safe along the edges, some
people use it to perform robot path planning and navigation. A
typical example is to use Hidden Markov Models for structural
information extraction at distinct indoor places, like corridor,
hall and intersection [16].

III. TOPOLOGICAL MODELING

GVD is a collection of all the equally distant points to
neighbouring obstacles. In other words, they are the centers
of circles which are tangent to surrounding obstacles. As for
a generalized description, the obstacles can be either points
or any other arbitrary geometric shapes. As for the points
whose circles are tangent to at least three distinct obstacles,
we call them meet points of GVD. The union of other points
on the GVD are defined as edges. Different meet points are
connected by explicit edges, while different edges intersect at
meet points. The following steps are implemented to define
the topological regions for a given map.

1) Extract the GVD for the given map;
2) For all pairs of adjacent meet points, track along the edge

that connects them;
3) Locate the half-way point on this edge and draw the circle

which is tangent to the surrounding obstacles;
4) Connect the two closest obstacle points and connect them

as the separation boarder of two regions;
5) Go to 1), till all regions are extracted.
Figure 1 illustrates the process to divide a target map into

distinct topological regions represented by different colors.
Since the meet points usually appear in the corners or inter-
sections, it is an intuitive way to define the topological regions
according to the location of meet points.

(a) Find an arbitrary pair of two neighboring meet
points

(b) The half-way point on the edge

(c) Topological regions by connecting base points on
the obstacles

Fig. 1. Region defining:figure a is the GVD of a structured map. First find
any two adjacent meet points. Then the middle point on this edge is extracted.
Finally all the base points on the obstacles are found out and connected to
form the GVD

IV. DESCRIPTOR BUILDING AND MATCHING ALGORITHMS

The critical procedures for localization are to build the
descriptors for meet points and to find proper matching algo-
rithms. A direct approach is to record the relative coordinates
of the edge points extended from one meet point. Then the
pattern matching technique can be performed [12], originated
from image processing techniques [17]. However, to compare
the local pattern with the global templates, the Local Voronoi
Diagram (LVD) map should be aligned with the global map
according to the current pose of the robot. An orientation-
invariant geometrical characteristics is still required.

Several features can be extracted from meet points of GVD.
We choose the following four major features. The most typical
one is number of edges emanating from a meet point. Second
is the distance to the closest obstacles at the meet point. The
third one is to calculate the relative departure angles of GVD
edges extended from the meet points. The last is the mean
curvatures for the edges to certain distance (parameterized in
figure 8).

In order to match two meet points, e.g. a meet point from
LVD with the global ones, the following steps are performed.

A. Valid the number of edges emanating from the meet point

As shown in figure 2, the number of edges is the most direct
and intuitive characteristic. This means the sensor noise and
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Fig. 2. The most distinguishable feature is the number of edges emanating
from a meet point. The left one has three while the right one has four edges.

position uncertainty will not affect this feature much. If the
number of edges of the local meet point is different from the
corresponding number of the global one, we can say that they
cannot be matched. If the numbers are same, the following
steps are carried out.

B. Distance to the closest obstacles at the meet point

Fig. 3. Even though the geometric shape of the edges emanating from these
two meet points are quite similar, the distances to the closest obstacles are
different enough to distinguish them.

As shown in figure 3, even though their geometric shapes
are similar, the shortest distance to the obstacle for the first
meet point (a) is larger than the second one’s(b). This distance
measurement is used to quickly eliminate negative candidate
meet points. Hence, we can set a threshold level according to
the reliability of the sensor we use. If the value|a−b

b | is greater
than an empirical threshold, we can conclude that they are
from distinct places. On the other hand, if the value is within
this range, we should continue to execute next validations.

C. Angular features and mean curvature

Fig. 4. Descriptor vector is consist of four dimensions: largest angle between
edges, smallest angle, largest mean curvature of the edges, smallest mean
curvature.

As shown in figure 4, we construct a descriptor vector
that consists of four dimensions. The first two dimensions
(minimum angle and maximum angle) represent the angle
feature of the edges emanating from the meet point. The other
two dimensions (minimum curvature and maximum curvature)
are the mean curvature information. Several typical criteria are

to be adopted in order to compare two descriptors. In order
to find out which one is most appropriate for this application,
twenty meet points with their edges were arbitrarily generated
and the descriptor vectors for all of them were calculated.
Then we cross match these sampled descriptor vectors using
different distance criteria.

Fig. 5. Evaluation of cross matching by angle between two vectors.

Fig. 6. Evaluation of cross matching by Euclidean distance

1) Separation angle by inner-product: The figure 5 shows
the result of cross comparison using the separation angles
depicted at the top figure. The color on the diagonal is dark
blue while the colors on two sides are similar. This means the
angles between the descriptor vectors are so small that it is
difficult to distinguish them in this way.

2) Euclidean distance: The figure 6 is the evaluation result
by using Euclidean distance. The values on the two sides are
more distinct from the values on the diagonal, which implies
it is more reliable for matching.

3) Mahalanobis distance: Since the evaluation is offline,
and all descriptors are available for evaluation. For the purpose
of generalization, Mahalanobis distance is adopted, which
introduces the scaling factor for each dimension. The result
is shown in figure 7. We could see that Mahalanobis distance
can better distinguish the differences.
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Fig. 7. Evaluation of cross matching by Mahalanobis distance

V. PARAMETERIZATION

Using these offline results, we could train the parameters
that are used for real experiment. Especially the calculation of
mean curvatures highly depends on the tracking distance apart
from the meet points. In other words, it is the area in which
we calculate the descriptor vector for the target meet point.
This evaluation can be implemented by a recall-precision test.

Definitions of recall and precision are shown in equation
1. First, fifty local descriptors for one target global meet
point were built by using virtual laser sensor fifty times. Then
another fifty local descriptors for another global meet point
were calculated in the same way. The threshold value for
matching can be set as the Mahalanobis distance between those
two original global descriptor vectors.

Figure 8 shows the recall-precision result of these one
hundred descriptor vectors to the target vector. We can see
that the matching recall decreases while the matching precision
goes up with the increasing of track distance. It means, if the
robot just focuses on a small range of area, the meet points
have high chance to be mismatched. On the other hand, if
the features are extracted in a bigger range, even though the
precision for matching is high, the value of matching recall
drops dramatically. So the optimal track distance should be the
one maximizing the multiplication of matching recall value
and precision value. This optimized track distance is just for
the description of this meet point. The repetitive work has to
be done for all the meet points in the given global map. The
resulting track distance is the mean of all the optimal track
distances.

precision =
true positive

true positive + false positive

recall =
true positive

true positive + false negative

(1)

VI. SEQUENTIAL LOCALIZATION BY HIDDEN MARKOV
MODEL

Since the state space for the topological map is discrete
and neighborhood relevant, a Hidden Markov Model can be

Fig. 8. Through the recall-precision test, we find out the optimal track
distance to build the descriptor for this target meet point.

constructed to perform a reliable localization. The following
variables are defined accordingly.

• The state space S:
The state space is composed of topological regions char-
acterized by the meet points. We denote the number of
states in the model by N .

• The initial distribution πi:
If there is no prior information for the location of the
robot, the initial distribution among S is uniform.

• The state transition probability matrix A = {aij}:
On the condition that there is no trained preference for the
robot, the robot is supposed to have equalized probability
to stay in the previous region and to move into its
neighboring topological regions. This is demonstrated in
the figure 9.

Fig. 9. transition matrix: the same probability to stay in the same region or
to go to the neighboring regions.

If the robot has predefined preference, for example, it
may high chance to turn left when it is located at special
intersection. In this case, the transition matrix should be
trained using Baum-Welch algorithm.

• Observation sequence:
It is denoted by O = {O1, O2, . . . , Ot}. It is comprised
of a sequence of descriptors extracted from local laser
observations (see: LVD in [12]).

• The observation matrix B = {bj(k)}:
Since the observation space is a continuous space(k
represents the observation), the observation matrix is
supposed to be computed for each time step. As discussed
above, the local map can be obtained by simulating a
laser range sensor. Then local GVD is calculated and the
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extracted local meet points are to be matched with all
global ones. This process is shown in the figure 10, where
the similarity between two matching vectors is equal to
e−MD2

. MD is Mahalanobis Distance.

Fig. 10. Matching process: match the local meet point to all the global ones
to the corresponding similarity value.

In order to compute the probability distribution over current
state based on all observations, the forward algorithm is used:

P (St|O0, ..., Ot) ∝ P (Ot|St)P (St|O0, ..., Ot−1)

∝ P (Ot|St)
∑
St−1

P (St|St−1)P (St− 1|O0, ..., Ot−1) (2)

As shown in the equation 2, the recursive estimation is
based on the observation model and transition matrix, which
have already been discussed in the previous part. Given the
observation sequence, the probability distribution for each time
instance can be computed.

VII. SIMULATION RESULT

The figure 11 demonstrates the estimation process using
forward algorithm for the simulation of a typical indoor
environment. The bar graphs show the probability distribution
on each state (with corresponding color). We would like to
address the following two observations. First is about the
definition of state space. Sometimes, the robot cannot observe
any meet point due to the limit of sensor range, namely in
transition regions. Under such situations, new intermediate
transition states were introduced, such that the robot has the
equalized probability to stay in these transition regions or
move to neighboring regions. Secondly, false state estimation
can be made at the beginning. This is due to the high
similarity for some meet points, which makes the robot easily
confused. This problem is solved by Viterbi algorithm to
find the most probable state sequence. The Viterbi algorithm
aims at finding the most likely sequence of hidden states
argmax
S0,...,St

P (S0, ..., St|O0, ..., Ot) as expressed below.


δ(St) = max

S0,...,St−1
P (S0, ..., St, O0, ..., Ot)

δ(St+1) = P (Ot+1|St+1)max
St

P (St+1|St)δ(St)

ψ(St) = argmax
St−1

P (St|St−1)δ(St−1)

(3)

Given the transition matrix and all the observations, we
can find out this most probable state sequence for the CLA
building simulation.

Fig. 12. Using Viterbi algorithm, we get the most probable sequence of pose
for the robot, which is totally matched to the real moving sequence in this
case.

We can see that this procedure provided more accurate
estimation because it introduced more transition information
in the algorithm.

VIII. CONCLUSION

Since the GVD will be effected strongly by the sensor noise,
the core challenge to make the algorithm applicable for real
robot implementation is to avoid the interference of the noise.
While, this has been a very tough task for many years in this
field. That is, how to distinguish the real obstacles and noise
among the sensor data is so complicated due to the uncertainty
and changeability of real environment. Since the core task of
this paper is to find out a lightweight algorithm for topological
localization, so the laser noise was got rid of manually. That is,
we assume there is no disturbance for the sensor information.

Though the robot was confused by some similar meet points
at the beginning of the simulations,it can correct these mistakes
by following observations according to the transition matrix.
The positive results of Hidden Markov Model showed that the
orientation-invariant features captured by the robot were robust
and distinguishable enough. This dramatically decreased the
computation cost for orientation information of the robot. As
shown in the table I, compared to other localization methods,
this is a relatively low-cost and reliable way to perform fast
topological localization.

TABLE I
COMPARISON AMONG DIFFERENT LOCALIZATION METHODS

method Reliability-against noise Recover-from-failure Complexity

laser Metric localizn high hard high
Choset’s method mid mid mid
template maching high easy mid

proposed hmm loc. mid easy low
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