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Abstract—Segmentation of point-cloud is still a challenging
problem, regarding observation noise and various constraints
defined by applications. These difficulties do not concede to
its necessity for almost all kinds of modeling approaches using
point-cloud. However, the criteria to justify the quality of a
clustering result are not much studied. In this paper, we first
propose a point-cloud segmentation algorithm using adapted k-
means to cluster normal vectors obtained from tensor voting.
Then we concentrate on how to use a non-parametrical criterion
to validate the clustering results, which is an approximation of
the information introduced by the clustering process. Compared
with other approaches, we use noisy point-cloud obtained from
moving laser range finders directly, instead of reconstruction
of 3d grid-cells or meshing. Moreover, the criterion does not
rely on the assumption of distributions of points. We show the
distinguishable characteristics using the proposed criteria, as
well as the better performance of the novel clustering algorithm
against other approaches.

I. INTRODUCTION

SEGMENTATION of point-cloud is an important base for
several mobile robotic applications, such as topologi-

cal mapping, semantical reasoning and scene reconstruction.
However, it is in general considered as a difficult problem,
especially for the applications using raw data points, because
of the following major reasons:
• Unreliable point-cloud observations: the unreliability is

multi-fold. In figure 1, we show a cropped part of point-
cloud observed from a doorway environment. Outliers,
shadow points, non-uniform distributions, missing points
etc. can be observed all over the place. These unreliable
observations make proper data-modelings subtle.

• Application constraints: since segmentation results of
point-cloud are used differently for applications, in order
to fit various requirements or constraints, several compro-
mises may be demanded. E.g. the cardinality of clustering
sometimes relies on human supervisions.

• Computational complexity: we could see from figure 1
that the number of points are usually large. Though sub-
sampling is usually performed, the computational cost is
still the bottleneck for most applications.

Respecting with these three major difficulties, we tackle
the segmentation problem based on raw point-cloud using
tensor voting, since it has been proved can help estimate the
missing structural information [1]. Regarding the complexity,
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Fig. 1. Clip of a typical point-cloud and common observation noises.

we use a recently proposed GPU implementation to alleviate
the computation [2]. The results are evaluated using a set of
datasets for both indoor and outdoor environments [3].

A. Contributions

We address the following aspects in this paper:
• Surface normal estimation using tensor voting. We show

its potential for structural extraction.
• Adapted k-means clustering considering both Euclidean

distance and surface normal similarity.
• Information theory based evaluation of segmentation re-

sults. As an instance, we show the result which uses the
proposed criterion for the estimation of the number of
clusters (cardinality).

B. Arrangement

The remainder of this paper is arranged as follows. We
start with introducing related works by categories. After the
overview of the algorithm pipeline in section III, we first
discuss The segmentation algorithm and validation methods
based on information theory in section IV. In section V,
the adapted k-means is introduced as well as the cardinality
determination strategy, followed by experiments on real dataset
in section VI. At last, we draw conclusions and introduce our
vision for future work.

II. RELATED WORK

A. Segmentation of Range Image

Pointcloud is sometimes also referred as “range image”.
Usually these two terminologies are not much distinguished.
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In this paper, we consider range images as the 3d data
which can be considered captured by a single scan, namely
a grabbed frame from a 3D range finder. Point-cloud can be
more complex in general. It can be combined with several
registered scans. It implies that the structure can not be directly
reprojected to a 2D plane without losing information.

Several works regarding range image segmentation have
been proposed. These works are based on different features,
such as edge, projected as from 2d images [4], [5]. Then
computer vision techniques are applied to process the data
in 2D. The main drawback of these works is that they rely
on almost-clean dense representations of the target models,
which is not the case for most robotics applications. Moreover,
the back-forth projection between 2d and 3d representation
is time consuming. The ideal case is that all scans are with
0-noise and uniformly distributed points. For typical mobile
robotic applications, since the range finder is mounted on a
moving platform and surveillant the work space from different
viewpoints, these problems are however inevitable.

The structural information can be obtained by local paramet-
rical modeling (e.g. surface model [6], [7]), non-parametrical
regression [8], and other local embedding techniques [9].
Regarding the propagation, they can be broadcast over field
[10], structured grid [11], [12], or over unstructured graph
[13] etc. Douillard et al showed a more detailed comparison
among common parametrical modeling algorithms [12]. They
discussed the metric for segmentation validation should be
based on a manually labeled ground truth. We consider the
assessment of the clustering result is able to be carried out
automatically with a non-parametrical manner.

B. Information Theory

In contrast to semi-supervised algorithms [14], for most
unsupervised clustering algorithms, such as spectral clustering
[15] or K-means, the target number of clusters of input data is
a key issue, namely cardinality of clustering. This problem has
been extensively studied in [16]. Though several adaptations
are proposed for specific applications such as self-tuning
spectral clustering [17], this problem persists in general. In
order to eliminate the dependency on knowing cardinality as
aprior, usually information theory can be adopted, such as
using Dirichlet Process based modeling [18]. In our previous
work [19], we proposed a segmentation algorithm using Chow-
Liu decomposition of the mutual information tree. When local
constraints can be defined, the cardinality can be taken as
parameter of global entropy maximization. Mutual information
has been proved to be an optimal clustering criterion [20]
for such setup. When visual features are introduced, several
segmentation applications can be found. They cover a range
from scene recognition [21], [22] and visual homing based
navigation [23], [24] etc.

C. Normal based Segmentation

Surface normal is a local consistent feature. Therefore it
is widely used for point-cloud analysis. Regarding segmenta-
tion, one early work by Pulli et al [25] aims at segmenting

range images into homogeneous regions, by decomposing x-
and y-components of the normal vectors. It assumes perfect
dense point clouds and the resulting algorithm only deal
with segmentation in 2.5D. Normal estimation based on local
constrained least square modeling [26] was also studied, but
it has much higher complexity for the regression process.
Holz et al proposed a segmentation algorithm by an initial
segmentation in normal space, then refines in distance space,
without specified clustering algorithm [27]. Teutsch et al
presented a clustering algorithm for subset segmentation [28],
which targets at segmentation of point clouds without plane-
assumption. [29] introduced an incremental way to model dif-
ferent clusters by using both angular and distance constraints.
In this work, we fuse the distance in normal direction space
into a compact distance function, where the normal difference
is used as a weighted component.

D. Tensor voting

Tensor voting [1] is originated in computer vision. It has
been extended to several applications related to segmentation
[30], [31]. Several works have been proposed on structure
extraction of point-cloud using Tensor voting as well [32],
[33]. We consider it is one of the most important algorithms for
structural analysis, because it is extraordinary performance in
its tolerance to noise and missing data, its consistency for local
information and intuitive extraction of evidence saliency etc.
Nevertheless, the computational cost of Tensor voting is high.
Thanks to the CUDA based tensor voting open-source library,
which we recently proposed [2], the algorithm is able to launch
in near real-time for reasonable data size. As a result, both
surface normals and geometrical saliency can be extracted.

III. OVERVIEW

The pipeline of the proposed algorithm is shown as figure 2.
We start with a sampling process of the raw data based on local
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Fig. 2. The pipeline of the proposed algorithm
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density. This step is critical for tensor voting, as discussed in
[33], because the voting result is a collective sum of all voters
surrounding a certain point. The density sampling process, as
a standard process, will greatly help to reduce the influence of
the non-uniform distribution of points. The samples are then
processed by sparse tensor voting. After that, the resulting stick
components are used to describe the similarity in normal space
among all the points. We use adapted k-means to perform
clustering over the points by a redesigned energy function J ,
which is discussed in section V-A. In order to validate the
clustering results, as well as select the proper cardinality of
clustering, a criterion based information theory is evaluated.
The details can be found in the following sections.

IV. SEGMENTATION QUALITY ASSESSMENT BY
INFORMATION THEORY

A. Information based quality assessment

We consider the segmentation problem as distributional
clustering. It means that each point is described as a distri-
bution. The relative entropy then becomes a natural measure
of the distance between distributions. Each distribution is
modeled as two parts: the distance in the normal space to
the cluster mean normal and local embedding relations to
kNN in its own cluster. For a cluster b, these two models
are represented by M b

normal and M b
knn respectively.

Given such a choice, mutual information has been proved to
be an optimal clustering criterion [20]. The clustering of point-
cloud P = {p1, p2, . . . , pN} into K clusters is a function:

C : P → {1, . . . ,K}

K is named as the cardinality of clustering.
By introducing clustering function C, the data points are

better organized. Therefore, we want to maximize the mu-
tual information between raw point-cloud and the clustering,
namely I(P,C). Based on information theory, the mutual
information can be further representation by

I(P,C) = H(P )−H(P | C) (1)

In general, the goal of clustering is to maximize the divergence
between clusters and minimize the “dynamics” within the
same cluster. In this case, H(P ) is determined with the raw
data, therefore independent on any specific clustering. The
target problem is thus converted as an optimization problem,
respecting with the minimization of a score in the following
form:

SMI(C) = H(P | C) =
K∑

k=1

nk
N
H(P | C = k) (2)

where nk is the number of points assigned to cluster k, N is
the total number of points. Score SMI describes the average
entropy of the data points from clustering function C. For an
optimal clustering C, the score will be minimized, resulting
in maximized mutual information I(P,C).

For each point pk in cluster k, the likelihood of occurrence
is:

p(pk | C = k) ∝
K∑

Mk
normal

K∑
Mk

knn

p(pk | Mk
normal,M

k
knn)

p(Mk
normal | C = k)p(Mk

knn | C = k)

(3)

Here we assume the two data models M b
normal,M

b
knn are

independent conditional on knowing clustering C. Thus the
intra-cluster entropy:

H(P | C = k) = −
nk∑
pk

p(pk | C = k) log p(pk | C = k) (4)

We need to see that there are several problems hinder the
performance of the clustering using the score function (2),
considering the formation of (3). Firstly, the joint probability
p(pk,Mk

normal,M
b
knn) is hard to formulate in a parametrical

way, which makes it hard to be estimated, e.g. by Maximize-
Likelihood Estimation. Besides, the derivation of (4) is not
possible to calculate in a close-form due to the first issue. Last
but not least, the cardinality of clustering K is unknown. In the
worst case, finding an optimal solution of unknown cardinality
of clustering is NP hard. Therefore, a proper approximation
of the joint distribution of data and models is required, which
is preferable to be independent of data distribution. We use
non-parametrical methods to approximate it, as introduced in
the next subsection.

B. Non-parametrical approximation of intra-cluster Entropy

Faivishevsky et al proposes a non-parametrical information
clustering (NIC) estimator using MeanNN differential entropy
[8], which leads to an inter-cluster entropy estimation that can
be summarized by:

H(X | C = j) ≈ d

nj(nj − 1)

∑
i 6=l|ci=cl=j

log ||xi − xl|| (5)

where || · || is the Euclidean distance between two datapoints
xi and xl (in Rd). We redesign this distance measure by
including the similarity in surface normal space as well in
order to enhance robustness and distinct the local planes. We
use the following measure in Euclidean-Normal space, for two
points pi and pl:

Dis(pi, pl) = Dmetric(pi, pl) + λDangle(pi, pl) (6)

Dmetric(pi, pl) = ||pi − pl|| (7)

Dangle(pi, pl) = 1−
−→pi · −→pl
|−→pi ||−→pl |

(8)

where −→pi and −→pl are normal vectors for points pi and pl
respectively. Parameter λ is used to adjust the weight of
angular difference. We can infer that it is a parameter that
converts the difference from normal space to metric space,
since the Dangle is within the range (0, 1).
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By combining (2 5 6), we can rewrite equation 2 in the NIC
form as 1:

SNIC(C) =
1

N

∑
k

3

nk − 1

∑
i6=l|ci=cl=j

logDis(xi − xl) (9)

The NIC form score is to evaluate the quality of the cluster-
ing. In [8], the calculation and naive clustering assignment is
executed in a non-heuristic way, where the reassignments of
cluster identity is random. It leads to very high computational
complexity of O(n2). Considering the large number of points
in a typical point-cloud, the calculation will be extremely
slow, let alone the issue of unknown cardinality. In this
paper, instead of searching for optimal solution derived by
(9), we use (9) to assess the quality of clustering results.
Compared with other information based criterion, such as
Bayesian information criterion (BIC):

BIC(C|X) = −2 · L(X|C)− ϕ · log n (10)

where ϕ is the number of free parameters, L(·) is the log-
likelihood, the NIC form is calculated from a pair-wise
distance matrix directly. However, the BIC criterion is not
directly applicable in this case, since the distribution function
is not explicit. After all, we see the following two benefits
of (9). On one hand, it greatly facilitates the programming
and calculation; on the other hand, the non-parametrical form
enables the assessment of the quality to be independent of
model assumptions.

Another widely cited criteria is the so-called Clustering
Evaluation Function (CEF) [34] based on quadratic form of
Renyi’s entropy measure [35].

SCEF (C) =
1

2N2

∑
i=1

∑
j=1

M(pi, pj)G(pi − pj , 2σ2) (11)

where G(x, 2σ2) is the value calculated by a Gaussian proba-
bility density function kernel N(0, σ). Parameter M(pi, pj) is
an indicator which is 1 when pi and pj are labelled differently,
otherwise 0. We will further compare these two criteria in the
next section, based on the experiment results.

V. ADAPTED K-MEANS CLUSTERING

A. K-means using Adapted distance

The non-uniform distribution and missing points from point-
cloud imply that a standard k-means clustering can not lead
to correct result, which is also shown in the comparison given
in the next subsection. Moreover, we could not use para-
metric model based clustering either, e.g. using Expectation
Maximization (EM) to tune parameters afterwards, because
any two arbitrary points are independently distributed. Here
we propose a K-means algorithm using the adapted distance
function proposed in 6. Inspired by soft K-means [36], where
an entropy term is used to encourage the responsibility of
each point as equalized as possible, we adopt information

1In the original paper [8], the 1
N

nominator was missing.

theory based criteria to indicate the local similarity within each
cluster. The cost energy function is formed as follows:

J =
N∑
i=1

K∑
k=1

Dis(pi, µk)
2 (12)

Applying the k-means routine using the cost energy function
(12), the complexity of algorithm is reduced to O(NK),
comparing with naive reassignments O(N2).

B. Determination of cardinality

We recall that the determination of cardinality K is gener-
ally required. As discussed previously, we use the NIC score
to find the optimal. Meanwhile, CEF is also [34] evaluated
as comparison. By varying the size of K, different scores
after convergence can be obtained as shown in figure 3. It
shows the statistics of 20 tests for each cardinality candidate.
Figure 3(a) and (b) show box-plots over all candidates using
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Fig. 3. Determination of cardinality of clustering. Red circles in (c) (d)
marks the detected salient changes, which indicates the potential number of
clusters. We could see that NIC criteria is more distinguishable in cardinality
detection.CEF and NIC respectively. The computational complexities
of both criterion are O(N2). The changes of both criteria
are monotonic along the variation of the number of clusters.
However the difference between two neighbouring choices is
of interest. In order to eliminate the influence of singularities,
we first extract the median values of the two groups of tests.
After that, we calculate the adjacent differences of the median
values, as shown in figure 3(c) and (d). The red circles marks
the potential number of clusters. They highlight the valley of
major slope transitions. We could see that the CEF criterion is
less intuitive than NIC. Moreover, NIC has less requirement
from data, since it is independent of the real data distribution.
On the contrary, the Renyi’s Entropy relies on statistics based
on local Gaussian kernels [37].

C. Clustering results on a typical indoor scan

The clustering results for the dataset depicted in figure 1 is
shown in figure 4(a) and (b) using K=7 (derived from figure 3),
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Result using proposed algorithm Result of bad initialization Standard k-means Spectral clustering
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(a) (b) (c) (d)
SNIC = −0.4541 SNIC = −0.2110 SNIC = −0.0292 SNIC = −0.0175
SCEF = 0.0922 SCEF = 0.0772 SCEF = 0.0865 SCEF = 0.0871

Fig. 4. Clustering results using different algorithms on the same structured dataset (after density sample: 2588 points). A lower SNIC , or higher SCEF

indicates better result, according to definitions. We could see that SNIC criterion is more informative as a assessment of the segmentation quality.

as a typical choice based on the result in 3(d). The different
converged results are caused by random initial states of k-
means. Though it can be optimized by more sophisticated
initial state selection algorithms, such as one seed per normal
cluster etc, this problem is not further investigated in this pa-
per. Nevertheless, the distinguished scores SNIC indeed show
the quality difference, regarding rationality of clustering. We
compare the proposed algorithm with two other methods. First,
standard k-means is executed based on Euclidean distance.
The result is shown in figure 4(c). The clusters are equally
distributed. This result is less helpful for further analysis, such
as structure reasoning. Besides, we perform spectral cluster by
using the same distance function (6). From the result depicted
in figure 4(d), we could see that some part of the point
cloud, such as side-walls are corrected clustered. However, the
result is not satisfied in terms of compactness and meaningful
segments. Moreover, the computational cost is much higher
than basic k-means, since spectral clustering conducts with an
inversion of the N × N distance matrix. By comparing the
two criteria, we could observe that SNIC is more distinctive
the SCEF . Especially for the non-preferable results in figure
4(b,c,d), the quality differences represented by SNIC is more
rational.

VI. FURTHER EXPERIMENTS AND DISCUSSION

A. Result on a typical outdoor dataset

A result on outdoor datasets can be found in figure 5. It is
a dataset with a tree on the ground. This dataset is an extreme
case which contradict with several assumptions we have in this
paper. Especially the normal directions from the tree crown is
very badly distributed. Therefore, for other approaches that
based only on normal clustering will not work. We see that
the distance function proposed in (6) combines the similarities
in both Euclidean space and surface normal space, results in

rational results. By cardinality analysis, we could see that the
rational clustering can be performed with cardinality 2, 4, 7 or
9. We show the result of 2 and 4 clusters in figure 5(c) and (d),
which segments the dataset into parts of ground, tree branch
and crown. The SNIC’s for these results are also provided as
benchmark for further studies.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have studied several criteria for assessing
the quality of clustering problem in terms of modeling of
point-clouds. Meanwhile, we proposed a k-mean inspired
clustering algorithm using a distance function fusing the
surface normal and Euclidean distances. The surface normals
are obtained by sparse tensor voting algorithm, which allows
adaptive structural analysis depending on the kernel size.
The clustering results are validated by non-parametric criteria.
The results show that it can be easily applied to point-cloud
segmentation problem, and obtain rational results. Further
automated point-cloud modeling algorithms can be envisaged.
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