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Abstract—Networked multi-robot systems benefit from a large
amount of heterogeneous online data on the server, and enable
poor-equipped robots to fulfill complex tasks. However, as a
major bottleneck of practical network, the limited bandwidth is
lack of consideration. In the matter of fact, resource competition
is pervasive for practical networked robotic applications. We
propose a multi-robot negotiation mechanism in this paper. It
includes a game theory based auction for allocating resources
that are shared among robot clients, such as the network
bandwidth. We validate the proposed strategy by a joint-
surveillance scenario. Experimental results demonstrate that the
proposed framework achieves excellent Quality of Service (QoS)
performance under the condition of resource competition, where
a shared network with limited bandwidth is optimized.

I. INTRODUCTION

Robots have become an integral part of human life. There
is a growing need for service robots in the society. Therefore,
requirements of services are more complicated than ever
before. It is impossible to develop a universal robot that covers
all possible services due to the limitations of power consump-
tion, payload, sensory and kinematic constraints, among many
others. As for a classic robot system, various sensors are
utilized on mobile robots. However, these sensors are usually
expensive. By adopting the paradigm of networked robots,
all primary information can be retrieved from the data center
so that the requirement on equipments is relieved. A typical
networked multi-robot system is shown as Fig 1. Nevertheless,
the competition of data retrieval is inevitable and optimal
solutions are required.

In this paper, we introduce an auction-based strategy to
solve the resource allocation problem over multiple clients
using game theory. As a case study, a joint-surveillance exper-
iment scenario is demonstrated as follows: A well-equipped
robot online generates and shares the available information
over the network, whereas a host server can aid the inspection
of several poor-equipped robot clients. The proposed scenario
is conducted with several challenges. For instance, network
bandwidth for transmitting image data, CPU occupancy for
parallel computation, as well as available number of hosts
(proxy) in multi-robot systems are limited. Several applica-
tions also require reliable network connections, for example,
urban search and rescue in [1], [2], [3], and topological
navigation [4], and synchronized data retrieval for multi sensor
fusion [5]. Therefore, how to maximize the utility of avail-

able resources on demand is a quite challenging problem.
Especially, when multi-robot clients request the same kind of
resource or service in an asynchronous manner. Above all,
optimization of the allocation strategy and negotiation among
client robots are managed, regarding the computational and
facility constraints of all the clients on the network.
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Fig. 1. Resource allocation framework for networked multi-robot systems

A. Game Theoretic Resource Allocation

Game theory has a long history in the decision making and
resource allocation. Authors [6] verified that even quite simple
negotiation protocols can be efficiently implemented by game-
theoretic techniques. Among the state-of-the-art algorithms
in game theory, market-based negotiation plays an important
role. The mechanism is applied in grid resource management
[7]. K.M. Sim et al [8] adopted genetic algorithms in order
to filter best-response strategies for market-driven clients. R.
Ariel [9] discussed the equilibrium of sequential bargaining
mechanisms. Although it can produce optimal solutions, se-
quential bargaining has more communication and computation
requirements in fully distributed environments. Generally, the
core algorithm of market-based negotiation is referred as
auction-based method. Auction [10], derive from economic
research, is a typical quick and concise strategy for multi client
system to make decisions on distribution of resources.

B. Auction-based Resource Allocation in Robotics

For robotic system, there are several works have been done.
M.G. Lagoudakis et al [11] introduced single task-centric
iterated auctions. Their experimental results are very close to
the theoretical optimal when bidding rules are appropriatdly
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designed. Vickery auction [12] is applied for solving real-
time task and path planning problems in multi-robot systems.
Combinatorial auction [13] is utilized to allocate multi-task
in a multi-robot system. They got good results with limited
number of task bundles. The above works solved the problem
by emphasizing feasible implementation of tasks.

C. Challenges

There are several advantages of the market-based resource
allocation mechanism. Firstly, it is the ability to deal with
the uncertainty in the real-time environment. This ability
is essential for information exchange among client robots.
Therefore, the host is able to respond faster than heuristic
approaches which are conducted with higher computational
complexity. Secondly, it is the scalability of the negotiation
system. Since the computation is distributed among the robot
clients, the system can handle large-scale problems.

However, when adopting a market-based resource allocation
mechanism in networked multi-robot systems, most problems
are to achieve individual objectives of clients and to perform
an integrated task at the same time. It is composed of the
following subtle difficulties:

• Data synchronization is hard for distributed systems,
especially when asynchronous tasks are performed[14].

• Resource allocation is low-efficient, when multiple sensor
data or information are distributed in the network.

• For strategy design, involving protocol and decision mak-
ing model design, several properties are desired to be
satisfied, such as Nash equilibrium and Pareto-efficient
solutions, individual rationality, stability, simplicity and
guaranteed convergence.

• Practical applications on real-time systems are not well
reported, although multi-client negotiation is extensively
applied for distributed systems.

D. Contributions

In this paper, we study the following characteristics, which
are deployed in physical devices and embedded systems.

• A negotiation strategy with incomplete information based
on game theory is proposed. It can relieve the competition
among client robots.

• A real-time experiment is implemented to integrate the
proposed strategy in order to balance the resource allo-
cation for joint-surveillance.

• A set of criteria are designed, which represents empirical
QoS. They evaluate the feasibility of online resource
allocation for networked multi-robot systems.

E. Arrangement

The rest of the paper is organized as follows. Section II
introduces the data flow of the proposed networked multi
system, followed by auction mechanism design in section
III which includes both decision making model and protocol
strategy. Section IV analyzes the proposed mechanism and a
set of QoS. The implementation of experiments scenarios and
the evaluation results of the auction strategy is demonstrated

in section V. Finally, section VI concludes the paper and
introduces our future vision.

II. DATA FLOW OF THE PROPOSED SYSTEM

Hereby we introduce the data flow and functionalities of the
proposed system. We demonstrate the details of auction-based
resource allocation at different phases in the network commu-
nication. Fig. 2 depicts the proposed system architecture which
enables automatic launching of new threads for each client.
Generally, each client attempts to connect to the network with
an approved address and a specific port. As a major feature,
we deploy a negotiation mechanism which can maximize the
utility of each robot client and the revenue of resource in the
data center. We define the specific functionalities in the host
and clients separately, as follows.
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Fig. 2. Data flow of communication and negotiation in networked multi-robot
systems

1) Information query in the data center: This functionality
is launched and managed by the host. It is the basis of
other operations. The data exchanging is an asynchronous
socket communication process. Moreover, rostopics are
utilized for an online service lookup and a real-time constraint
communication. By fusing these two aspects, the data access
is more efficient than solely accessing of a relation database.

2) Auction-based negotiation: This function is embedded
with a logic programming module, which results in a priority
list of the response order by ranking all connected robot clients
using logical regulation. After robots are connected to the
network, the host publishes a resource price menu of auction
bids. Clients send their bids according to the price menu
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and their computational ability. E.g. when a client has high
local CPU usage, the price that it can afford will be limited
accordingly.

3) Scheduling management: For each client, the interval of
retrievals to query responses is differently due to the priority.
For example, the higher priority of the client, the less waiting
time. In addition, a local data buffer is embedded for storage
of the frequently requested data. Since activities of robots are
usually routine, the same resource may be queried repetitively.
Therefore, the scheduling mechanism help to alleviate the
database access bottle-neck effect to a certain extent.

III. SYSTEM MODEL AND MECHANISM

We model the interaction between the host and robot clients
as a Vickrey-Clarke-Grove (VCG) auction [15] game, which
is also called the second-price auction (SPA). The mechanism
tries to optimize both the total revenue of resource provider
and utility of each robot client.

A. The Auction Mechanism

Let N = {1, . . . , n} denotes a set of robot clients, who
share a fixed bandwidth. For k parallel and dependent requests,
one unit bandwidth has a fixed price p. Each robot is selfishly
motivated and comes up with rational in order to make their
bids. As a bidder, the robot client does not know the bid values
of others. Each of them calculated their total cost as:

ci(ti) = ωtti − pti (1)

where ti is the time slot that solely completes requests of client
i, ωt is a reward weight for request completion.

Different from [16], the exponent utility function of robot i
is a convex completion function calculated as:

ui(ti) = ωi log(1 + ti)− pti (2)

where ωi is the weight derived from the equation (1).
Without loss of generality, we assume: the capacity of each

resource is inelastic and undividable; all resources use time-
sharing policy to schedule tasks in the data flow.

At the heart of the negotiation mechanism in the proposed
system lies a simple distributed protocol that allocates the
resources via a sequence of SPA one-round auctions. Based
on the above assumptions, the object function in clients’ side
is given by

max
ti≥0

K∑
i=1

ui(ti) (3)

where
∑

i ωi = 1. On the other hand, the revenue of resource
provider is defined as

L =

K∑
i=1

pti (4)

The constraint is the deadline of execution time T0:
K∑
i=1

ti ≤ T0 (5)

Lemma For each robot client i, the utility ui is increasing,
strict concave, and twice continuously differential in ti.

From the first order necessary conditions, which are also
sufficient, the optimal completion time of client i is derived
from (3) as

t∗i = 1− ωi

p
(6)

Since each robot client could get an optimal value, then the
summation are optimal. Please note that the time constraint
must hold equality, by plugging (6) into (5), we have

K∑
i=1

(1− ωi

p
) = T0 (7)

Assuming that ω1 ≤ ω2 ≤ · · · ≤ ωN , then the number
of admitted robot clients K is optimized, thereby optimizing
the resource provider revenue in equation (4). As proved in
[16], the proposed mechanism gets a Nash equilibrium as the
following theorem.

Theorem Nash equilibrium of the auction game always
exists when each request solves its optimal problem indepen-
dently without considering the multiplexing resources.

B. Implementation of the Mechanism

1) Bidding Rules: Inspired by [11], we define the bidding
rules for comparison as follows:

MinMax : bi = c∗i = ci(t
∗
i ) (8)

MinSum : bi = c∆i = ci(t
∗
i )− ci(ti) (9)

MinMix : bi = c∗i + c∆i (10)

where c∗i denotes the optimal cost of request xi, and c∆i is the
extra cost. Note that the MinSum is correspond to the above
optimal utility in equation (3).

2) Auction Rules: Several functions for negotiation are
defined, such as auction rules: spa rule, priority rank:
rank bidder value, allocation rules: allocate rule, payments
rule; payments rule. The inputs and outputs are shown as
Table I, where the clients are participants in the current game,
allocate are the preference of each client.

TABLE I
CONFIGURATION OF HOST AND CLIENTS IN EXPERIMENT

Function Inputs Outputs

spa rule bids, winner, topPirce, rank bidder value
secondPrice, allocate

rank bidder value clients, bids, allocate priority rank list
allocate rule clients, rank, allocate allocation

payments rule clients, rank, prices bids

3) Auction Implementation: The process is triggered by the
introduction of a task to the system as shown in Fig. 2. In every
case, the auction proceeds in five steps:

• Task announcement: the host publishes the price menu
P > 0.

• Bid submission: after observing the price menu, robot
client i submits their bids bi ≥ 0.
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• Winner list publishing: the host sends a response priority
rank list according to the bids and preference of clients.

• Auction renewal: the auction starts another round, since
the previous one reached a deadline. Players and priority
rank list are generated and updated.

Basic operation policy of the request negotiation is demon-
strated in Table II. The primary objective of the policy is to
provide an index for ranking candidate requests. It can be
made by considering the quantity of free CPU, bandwidth and
willingness payment of each request, etc.

TABLE II
NEGOTIATION ALGORITHM USING PROLOG PSEDOCODE

Inputs: clients I , price:T , bids:P , profile L
Outputs: RANK list, Winner, payments

1 BEGIN
2 rank bidder value pairs(clients:I, bids:P,rank:RANK):-
3 findall(B-A, (nth1(K,I,A),nth1(K,P,B)),PA),
4 sort(PA,SPA),
5 reverse(SPA,RANK),
6 allocate rule(clients:I,rank:RANK,allocate:L):-
7 RANK=[ TopPrice-Winner— ],
8 findall(LA, (member(A,I),win price(Winner-1,A-LA)),L),
9 payments rule(clients:I,rank:RANK,price:T):-
10 RANK=[ TopPrice-Winner—[SecondPrice- — ]],
11 findall(TA, (member(A,I),win price(Winner-SecondPrice,A-TA)),T),
12 spa rule(bids:P,win:Winner,by:TopPrice,price:SecondPrice],allocate:L,
13 prices:T):-
13 clients(I),
14 rank bidder value pairs(clients:I,bids:P,rank:RANK),
15 allocate rule(clients:I,rank:RANK,allocate:L),
16 payments rule(clients:I,rank:RANK,prices:T),
17 RANK=[TopPrice-Winner—[SecondPrice- — ]].
18 return RANK
19 END

IV. ANALYSIS AND DISCUSSION

We analyze the integration of auction strategy and data
exchange in the communication interfaces, and followed by
the QoS criteria are defined for its evaluation.

A. Data Flow Analysing

The communication interfaces relation in the proposed sys-
tem is shown in Fig. 2. We emphasize the following features
of the conducted data flow:

1) Compatibility: We use TCP socket as the major com-
munication interface in order to facilitate the generalization.
Its protocol is built on top of the twisted framework which is
deploying asynchronous, event-driven and multi-thread sup-
ported network system in Python [17]. Therefore, it is easy to
compose complex applications in various pattern.

2) Diversification: The proposed mechanism can fit various
robots since several different robots are deployed in it [18].
This is the most obvious characteristic for current networked
multi-robot systems. The resource sharing can be shared by
robots equipped with different sensors. Moreover, robots can
be allocated to an integrated task by utilizing sensors without
the expensive cost.

3) Reliability: As there are multiple robots in the system,
the reliability needs to be guaranteed when some robot clients
lose connection or new clients join the network. Therefore, we
define a set of QoS to do the evaluation.

B. Quality of Service (QoS)

Generally, QoS is used to assess the performance of a Ser-
vice Oriented Architecture. It advertises performance quality
levels of service which are provided by service providers; at
the same time, clients use it to select an optimal candidate
data/service, which could be at least in part fulfill the request.
Therefore, a well-defined set of QoS’s could greatly help the
assessment of the quality of a resource allocation mechanism.
In common cases, CPU usage is one of the most important
factors to support high level performance , since the responses
of request are also depend on it. Several properties are
essentially satisfied behind the QoS, such as Nash equilibrium,
Pareto-efficiency, stability and nationality.

• Time-to-Response (ToR)
ToR is defined as a period time for a client to received a
response after a request has been sent:

ToR = TData received − TRequest sent

• Reliability-of-Response (RoR)
RoR is defined as a ratio that the retrieval data is
successfully received. It is calculated in percentage as:

RoR =
#Succeeded Requests

#TotalRequests

• Complexity
Since the case study is joint-surveillance in this paper, it is
important to evaluate computation complexity of auction-
based negotiation. When considering trade-offs between
scalability and solution quality in networked multi-robot
systems, it is also important to consider the problem
domain. For the robot system, there are hard real-time
constraints when several robots perform task online.

V. EXPERIMENTAL VALIDATION

The goal of this case study is to realize a joint-surveillance
for several poor-equipped robots by using video sequences
captured by on-board cameras. The regional appearance and
video sequences that can be retrieved by these poor-equipped
robots through a database with all information registered on
it. Whereas the resource competition among requested robots
can affect the efficiency of online information retrieval greatly.
In this section, we set up the following scenario for evaluating
the resource allocation strategy.

A. Design of the Experiment

The system hardware includes two kinds of robots. On
one hand, a high level robot, which is equipped with various
kinds of sensors like kinect, infrared, audio and inertial unit
(IMU), should provide sufficient mapping and localization
information. On the other hand, several poor-equipped robots
with only cameras and wireless connectors, which performs
as a user. It requests data, such as video sequences in the
local neighbourhood. The software of the system is based on
the socket communication protocol and ROS communication
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interface which publish and subscribe rostopic. The ne-
gotiation between poor-equipped robots and the host utilizes
socket framework as we discussed in section III.

In this test, several poor-equipped robots send images or
video sequence in the local neighbourhood to the host who
could access the data center. The host matches the image
with the information stored in the data center, and sends the
request information back to the poor-equipped robots. Details
of experiment setup are introduced as follows.

• Build a map of a typical indoor environment around it as
shown in Fig. 3. All information on the map is stored in
a data center, and can be queried by any user to uncover
such structure, for instance, the poor-equipped robot who
is the winner in the auction-based negotiation.

• Provided with the ROS topic, each poor-equipped robot
can send several requests by the captured images or video
sequence in the local neighbourhood depicted in (A) and
(B) of Fig. 3 to the host.

• Each request is managed by the host with predefined
auction-based management mechanism with scheduling
algorithm and protocol.

Fig. 3. A map of the typical indoor environment for multi robots joint-
surveillance

B. Results and Analysis of the Experiment

In the online joint-surveillance scenario, several robots
attempt to update the global representation by sending video
sequence in parallel. Such operations are computationally
heavy for the network.

At first, we compare the ToR of different resource allocation
approaches. As shown in Fig. 4, the response time is greatly
reduced when bidding rules are applied. MinSum performs
better than the other two, and MinMax is the worst among
the three bidding rules. This is consistent with our theoretic
results in section III, since MinSum is equivalent to sum utility
maximization of all requests.

Second, we calculate the average RoR as shown in Table
III. The bandwidth limitation is 2Mb/s for each client. For
each resource retrieval mission, we setup a timeout as a
transmission tolerance. The results demonstrate more requests
get responses from the host, when auction strategy is applied.
Our conclusion fit the simulation results in [19].
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Fig. 4. Time-of-Response comparison of different bidding rules

TABLE III
ROR COMPARISON AMONG DIFFERENT BIDDING RULES UNDER VARIOUS

TIMEOUT PERIOD

Timeout Period Bidding Rules

(Second) None MinMax MinSum MinMix

10 0% 8.27% 13.34% 11.67%
20 0% 66.78% 71.65% 76.20%
30 56.31% 100% 100% 100%
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Fig. 5. Comparison of CPU usage for 3 robot clients
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Third, computation complexity is evaluated by CPU usage
for each client robot as shown in Fig. 5. We could see that
they are evidently reduced, since clients would decide not to
query redundant information when the ranking on the resource
allocator is low. Fig. 6 depicts that with the control strategy.
CPU cost from the host side is reduced. This is an important
feature, since we aim at realizing the information retrieval with
minimized cost.
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Fig. 6. Comparison of CPU cost of the host

VI. CONCLUSION

In this paper, we have presented the design, implementation
and evaluation of an auction-based negotiation and scheduling
strategy for resource allocation problem in networked multi-
robot systems. A dynamic priority scheduling method and
an auction mechanism are proposed, which are implemented
by logic programming. The experimental results demonstrate
a significant improvement in terms of ToR, CPU usage etc.
In addition, the system computational complexity is low, by
which the extra burden on the real-time tasks is limited.
Given that a flexible and less computational auction strategy is
utilized, future work will address experiments on a multi-hop
networked robot system.
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