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Abstract— Combining multiple sensors enables a robot to
maximize its perceptual awareness of environments and en-
hance its robustness to external disturbance, crucial to robotic
navigation. This paper proposes the FusionPortable benchmark,
a complete multi-sensor dataset with a diverse set of sequences
for mobile robots. This paper presents three contributions. We
first advance a portable and versatile multi-sensor suite that
offers rich sensory measurements: 10Hz LiDAR point clouds,
20Hz stereo frame images, high-rate and asynchronous events
from stereo event cameras, 200Hz inertial readings from an
IMU, and 10Hz GPS signal. Sensors are already temporally
synchronized in hardware. This device is lightweight, self-
contained, and has plug-and-play support for mobile robots.
Second, we construct a dataset by collecting 17 sequences that
cover a variety of environments on the campus by exploiting
multiple robot platforms for data collection. Some sequences
are challenging to existing SLAM algorithms. Third, we pro-
vide ground truth for the decouple localization and mapping
performance evaluation. We additionally evaluate state-of-the-
art SLAM approaches and identify their limitations. The
dataset, consisting of raw sensor measurements, ground truth,
calibration data, and evaluated algorithms, will be released.

I. INTRODUCTION

A. Motivation

Multi-sensor fusion for robust perception is fundamental
to various robotic applications. Different sensors can comple-
ment each other, and thus the system’s perception capability
is enhanced with sensor fusion. Over the past decades, re-
search on multi-sensor SLAM has made substantial progress.
High-quality open datasets, which are collections of multi-
sensor data and provide a suite of benchmark tools, signifi-
cantly contribute to this advancement. On one hand, these
datasets can waive inhibitive requirements on budget and
workforce, such as system integration calibration and field
operations. On the other hand, they investigate the advantages
and limitations of current SLAM solutions and elaborately
design practical, but challenging sequences [1], [2]. Several
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of them also introduce novel sensors and indicate future
research opportunities [3]. Researchers can easily develop,
validate, and rank their algorithms with others, thus accel-
erating the breakthroughs. However, existing datasets were
mostly collected with a single data collection platform or
simplified sensor configuration. Researchers may only utilize
limited sensors to develop algorithms that has a risk of over-
fitting to a benchmark. Hence, we consider that a desirable
dataset should fulfill the following four requirements.

1) Various sensors are required, making it possible to
explore novel approaches to utilize them jointly.

2) Algorithm evaluation should be fairely conducted on
various mobile robots. These robots perform different
motion patterns that may challenge several SLAM al-
gorithms’ assumptions.

3) Sequences have to cover from room-scale (meter-level)
to large-scale (kilometer-level) environments to evaluate
algorithms’ scalability.

4) Ground-truth trajectories and 3D maps are required to
evaluate algorithms’ localization and surface reconstruc-
tion accuracy, respectively.

B. Contributions

There appears to be an absence of compatible public
datasets that satisfy these requirements, motivating us to
propose a new SLAM benchmark.

This paper proposes the FusionPortable benchmark, a
novel multi-sensor dataset with a set of sequences from
diverse environments. Our contributions are presented three-
fold. First, a portable and versatile multi-sensor device
is elaborately manufactured. Two RGB frame cameras are
mounted on the left and right side, one high-frequency and
high-precision IMU is mounted internally, and one RTK-
GPS is installed on the top position. Moreover, thanks to
current progress in sensory technology, both novel event
cameras and high-resolution 3D LiDAR are available. Thus,
we also integrate them with our sensor rig and investigate
their performance. All these sensors are mounted on the same
rigid aluminum-alloy-based parts. Thus, their spatial relation
has a tiny dynamic deviation. The complete device has its
own clock synchronization unit, processor, and battery, thus
self-contained. Since its size, weight, and extensibility (see
Fig. 1) are satisfying, we advance that it would be a plug-
and-play support to various mobile robots.

Second, we install the sensor rig on various platforms
ranging from the handheld mode with a gimbal stabilizer, a
quadruped robot, and an autonomous vehicle in performing



TABLE I
COMPARISON WITH PREVIOUS DATASETS ON DATA-ACQUISITION PLATFORM, ENVIRONMENT, SENSOR TYPE, AND GROUND-TRUTH METHOD.

Dataset Platform Environment Sensor GT Pose GT MapIMU GPS LiDAR Frame Cam. Event Cam.

UZH-Event [3] Handheld In/Outdoors X X Mocap
ETH-EuRoc [4] MAV Indoors X X Mocap/LT Nova MS50
TUM VI [5] Handheld In/Outdoors X X Mocap

MIT DARPA [6] Car Urban X X X X GPS/INS
KITTI [7] Car Urban X X X X RTK-GPS/INS
Oxford RobotCar [8] Car Urban X X X X GPS/INS/SLAM
UrbanLoc [9] Car Urban X X X X GPS/INS

Newer College [10] Handheld Outdoors X X X 6DoF ICP BLK360
NCLT [11] UGV In/Outdoors X X X X RTK-GPS/SLAM
M2DGR [12] UGV In/Outdoors X X X X X RTK-GPS/Mocap/LT
MVSEC [13] Handheld/UAV/Motorcycle/Car In/Outdoors X X X X X Mocap/SLAM

Ours (FusionPortable) Handheld/Quad. Robot/UGV In/Outdoors X X X X X Mocap/RTK-GPS/6DoF NDT BLK360

Mocap: Motion capture system. LT: Laser tracker.

distinguishable motion for the dataset construction. Various
structured or semi-structured environments on The Hong
Kong University of Science and Technology (HKUST) cam-
pus, including the lab, garden, canteen, corridor, escalator,
and outdoor road, are examined in the dataset. Also, the
collected sequences present several environmental changes
caused by external light, moving objects, and scene texture.
These issues are challenging to SLAM algorithms.

Third, besides ground-truth poses, we also provide ground-
truth maps of most indoor sequences. We consider that
measuring the mapping accuracy is crucial for evaluation. We
also benchmark several state-of-the-art (SOTA) SLAM sys-
tems, including two vision-based methods and four LiDAR-
based approaches. To benefit the community, the dataset will
be publicly released: https://ram-lab.com/file/
site/multi-sensor-dataset.

II. RELATED WORK

There are extensive datasets for robotic perception. Here,
we introduce related works with a focus on SLAM.

Several datasets were specifically designed for one type of
sensor. Mueggler et al. [3] proposd the event camera dataset
for the purpose of overcoming illumination and motion blur
issues caused by frame cameras. Pomerleau et al. [1] pro-
posed the point cloud dataset that covers a large spectrum of
environmental structures to challenge registration algorithms.
Handa et al. [14] promoted the research on RGB-D cameras
by publishing the ICL-NUIM dataset.

Complementing vision sensors with inertial measurements,
visual-inertial odometry (VIO) approaches can tremendously
improve camera tracking accuracy and robustness. Relevant
datasets have been reported. Burri et al. [4] presented the
EuRoc dataset collected by a micro aerial vehicle (MAV) in
an industrial environment and a room. Schubert et al. [5]
put forward the TUM VI benchmark by collecting handheld
sequences with a careful photometric calibration forwards.

The DARPA challenge has driven the development of
autonomous vehicles. Huang et al. [6] presented the MIT
DARPA dataset with over 90km sequence. Geiger et al. [7]
presented the KITTI driving benchmark where diverse per-
ception tasks are explored. There are other datasets targeting
at long-term navigation [15] and urban challenges [9].

Several datasets were collected by handheld devices and
other types of ground robots. Ramezani et al. [10] collected
the Newer College Dataset with a handheld device. The
NCLT dataset [11] facilitated the long-term SLAM research
by collecting sequences in a college campus, over 147.4km
traverse and 15 months. The M2DGR dataset covers various
challenging scenarios such as entering lifts and indoor-
outdoor traverse [12] with a ground robot. Zhu et al. [13]
proposed a multi-vehicle dataset for event-based perception.

Table I compares existing datasets with our work. In
summary, our dataset is more complete from xx aspects: 1)
raw and rich sensory measurements; 2) data collection on
three different platforms including a legged robot; 3) ground-
truth trajectories and 3D maps for algorithm evaluation.

III. SYSTEM OVERVIEW

This section introduces sensors used in our dataset and
how we achieve the spatio-temporal calibration between
each sensor. Fig. 1 shows the handheld device equipped
with multiple sensors and how it is mounted on three data
collection platforms.

A. Sensor Configuration

Sensors’ characteristics can be found in Table II. We use
the Intel NUC to run sensor drivers, attach timestamps of
sensor messages, and record messages into ROS bags on the
Ubuntu system. The PC uses an i7 processor, 1TB solid-state
drive (SSD), and 64GB DDR4 memory. Below, we provide
detailed description of these sensors.

1) 3D LiDARs: We configure the OS1-128 LiDAR to
provide accurate measurements of surrounding environments.
This LiDAR has two attractive properties. First, an internal
synchronized IMU outputs 100Hz linear accelerations and
angular velocities. Second, it additionally outputs depth
images, signal images, and ambient images of surroundings.

2) Stereo Frame Cameras: Two FILR BFS-U3-31S4C
global-shutter color cameras are mounted at two sides on
the system, facing directly forward. They are synchronized
by an external trigger and capture high-resolution images at
20 fps. Their exposure time is set as fixed values to minimize
the relative latency. Our experiments show that the average
difference in timestamps of these images is below 1ms.
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Fig. 1. The multi-sensor device and data collection platform: (a) CAD model of the sensor rig, where axis directions are colored: red: X , green: Y , blue:
Z. The sensor rig is rigidly mounted on (b) a gimbal stabilizer, (c) a quadruped robot, and (d) an apollo autonomous vehicle.
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Fig. 2. Scene Images of places of several sequences.

3) Stereo Event Cameras: Two event cameras are also
configured. They possess several desirable properties: high
temporal resolution, high dynamic range, and low power
consumption. The cameras have a 346 × 260 resolution
and an internal high-rate IMU output. Event cameras are
synchronized using the trigger signal generated from the left
camera (master) to deliver sync pulses to the right (slave)
through an external wire. But there is no way to synchronize
the image acquisition (around 10-20ms offset). To suppress
the LiDAR’s laser light, both cameras are equipped with
additional infrared filters. For indoor sequences, we manually
set and fix the APS exposures, which helps to minimize the
latency between cameras. For outdoor sequences, we use
auto-exposure to avoid over- or under-exposure.

4) Inertial Measurement Unit: A tactical-grade STIM300
IMU that is rigidly mounted below the LiDAR is employed
as the main inertial sensor of the system. It features a high
update rate (200Hz) and low noisy and drifting measure-
ments. Its bias Instability is around 0.3◦/h.

5) Global Positioning Systsem: We additionally install a
ZED-F9P RTK-GPS device on the top of the LiDAR. In
outdoor scenes, the GPS is activated and provides accurate
latitude, longitude, and altitude readings. But it may some-
times become unstable due to buildings’ occlusion.

B. Sensor Calibration

We carefully calibrate intrinsics of individual sensors, ex-
trinsics, and overall time latency between sensors in advance.
We define the coordinate system of the STIM300 IMU as the
body frame. We provide calibration data and reports in the
dataset website.

1) Clock Synchronization: We use an FPGA to generate
an external signal trigger to synchronize clocks of all sensors.
This can guarantee data collection across multiple sensors
with minimum latency. The FPGA receives a pulse-per-
second (PPS) signal from the GPS and outputs 200, 20, 10Hz

TABLE II
SENSORS AND CHARACTERISTICS

Sensor Characteristics

3D LiDAR
OS1-128, 120m range@10Hz; FOV: 45◦vert., 360◦horiz.
Image: 1028× 128@10Hz
IMU: ICM20948@100Hz, 9-axis MEMS, intrinsic calibrated

Frame
Camera

Stereo color cameras: 2 FILR BFS-U3-31S4C
Resolution: 1024× 768, global shutter@20Hz
FOV: 66.5◦vert., 82.9◦horiz.

Event
Camera

Stereo color event cameras: 2 DAVIS346
Resolution: 346× 240; FOV: 67◦vert., 83◦horiz.
IMU: MPU6150@1000Hz, 6-axis MEMS, intrinsic calibrated

IMU STIM300@200Hz, Bias Instability 0.3◦/h, Allan Var. @25◦C

GPS ZED-F9P RTK-GPS@10Hz, 4 concurrent GNSS, L1/L2/L5 RTK

signal to the IMU, cameras, and LiDAR, respectively. The
FPGA switches to use its internal clock to enable the time
synchronization in GPS-denied scenes.

2) Stereo Camera Calibration: Intrinsics and extrinsics
of our stereo frame and event cameras are estimated using
the Matlab calibration toolbox, where the pinhole camera
and radial-tangential distortion model are used. We move
the sensor suite before a checkerboard to collect a sequence
of images. We evenly sample images as the calibration data
and manually remove outliers with high reprojection errors.

3) Camera-IMU Extrinsic Calibration: The intrinsics of
IMUs are calibrated using the Allen derivation toolbox1

that estimates the noisy density and random walk for gy-
roscope and accelerometer measurements. After that, the
spatial and temporal parameters of a camera w.r.t. an IMU
are obtained by the Kalibr [16]. Our system consists of
4 IMUs: STIM300, ICM20948 in the LiDAR, and two
MPU6050 in the DAVIS346 event cameras. Thus, we cali-
brate the intrinsics of these IMUs, and estimate extrinsics of
these sensor pairs: 〈STIM300, frame cameras〉, 〈STIM300,
event cameras〉, 〈left MPU6050, left DAVIS346〉, and 〈right
MPU6050, right DAVIS346〉.

4) Camera-LiDAR Extrinsic Calibration: Given initial ex-
trinsics, we further refine the camera-LiDAR extrinsics. The
checkerboard is the calibration target that provides distinctive
corners and boundaries for data association. We extend the
work proposed by Zhou et al. [17] by improving feature
extraction and matching step. We instead extract the outer
corners of the board from point clouds and images. The

1https://github.com/ori-drs/allan_variance_ros
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Fig. 3. Sample sensor measurements. (a)-(d): images captured by the frame
camera. (e)-(f): images augmented by positive events (red) and negative
events (blue). (h)-(i): 3D point clouds of the LiDAR. The grid size is 10m.

extrinsics are optimized by minimizing the distance of all
corresponding corners.

IV. DATASET DESCRIPTION

This section first introduces the overall features of dif-
ferent sequences, which stand as our basic criteria for data
collection. Details are then described, including the ground
truth estimation method and dataset format.

A. Sequences

The collected sequences should cover various environ-
ments, lighting conditions, motion patterns, dynamic objects,
etc. We categorize major characteristics of our collected
sequences as follows:

1) Location: Environmental locations are divided into
indoors and outdoors. GPS signal is available but some-
times unstable in outdoor environments.

2) Structure: Structured environments can mainly be ex-
plained using geometric primitives (e.g., offices or
buildings), while semi-structured environments have
both geometric and complex elements like trees and
sundries. Scenarios like narrow corridors are structured
but may cause state estimators.

3) Lighting Condition: Frame cameras are sensitive to
external lighting conditions. Both weak and strong light
may raise challenges to visual processing algorithms.

4) Appearance: Texture-rich scenes facilitate visual algo-
rithms to extract stable features (e.g., points and lines),
while textureless may negatively affect the performance.
Also, many events are triggered in texture-rich scenes.

5) Motion Pattern: Slow, normal, and fast motion may be
performed. Regarding mounted platforms, the handheld
device performs arbitrary 6-DoF and jerky motions,
the device installed on a gimbal stabilizer conducts 6-
DoF but stable motions, the quadruped robot mostly

(a) Motion Capture Room (b) Building

Fig. 4. Ground-truth point cloud in color of the motion capture room,
corridor, and building scenario. Point cloud data was recorded by the Leica
BLK360 laser scanner. They are used to generate trajectory groundtruth and
evaluate algorithms’ reconstruction accuracy.

performs planar but jerky motions. In contrast, the
vehicle performs planar movements at a constant speed.

6) Object Motion: In dynamic environments, several el-
ements are moving while the data are captured. The
more time of the data capture, the more deformed
the elements will be (e.g., pedestrians or cars) [1]. In
contrast, moving objects are few in static environments.

Table III summaries key features of each sequence, Fig.
2 shows several scene pictures, and Fig. 3 illustrates sample
sensor data. The motion capture room is abbreviated as the
MCR in the following sensors.

B. Groundtruth Generation

Most sequences provide ground-truth poses for algorithm
evaluation. In several indoor scenes, we also provide ground-
truth maps of surrounding environments. The ground truth
generation is detailed as follows:

• Ground-truth maps: In small- or middle-scale environ-
ments, we use the Leica BLK360 laser scanner to record
the structure’s high-resolution colorized 3D dense map
with millimeter accuracy from multiple locations. Fig.
4 visualizes three examples.

• Ground-truth poses: In the motion capture room, we use
the OptiTrack system to measure the pose of the center
of reflective balls at 120Hz with millimeter accuracy.
The OptiTrack is directly connected with the same
PC to record poses to minimize the time latency. The
extrinsics from the balls’ center to the body frame of
the sensor rig are solved by the hand-eye calibration
approach. In middle-scale environments that are covered
by the ground-truth maps, we employ the NDT-based
6-DoF localization [18] to estimate LiDAR’s poses in a
prior map as the ground-truth trajectory. In outdoor en-
vironments, we fuse the RTK GPS signal with LiDAR-
inertial measurements to obtain accuracy trajectories
based on the LIO-SAM [19].

C. Data Format and Post-Processing

Data were collected in the ROS environment. We provide
both ROS bags and individual data files for better usage:

1) env.bag is the raw rosbag obtained from the data
collection process. It can be parsed using ROS tools.

2) env ref.bag is the refined rosbag where sensor data
are post-processed with below steps.



TABLE III
SOME STATISTICS AND FEATURES OF EACH SEQUENCE

Platform Sequence T[s] D[m] ||v||[m/s] Location Structure Lighting Texture Motion Object GT Pose GT Map

Handheld

canteen night 290 270 0.93 indoors structured weak rich 6-DoF static 6-DoF NDT Yes
canteen day 230 250 1.09 indoors structured normal rich 6-DoF static 6-DoF NDT Yes

garden night 280 265 0.94 indoors structured weak rich 6-DoF static 6-DoF NDT Yes
garden day 170 173 1.02 indoors structured normal rich 6-DoF static 6-DoF NDT Yes

corridor day 572 669 1.17 indoors structured weak less 6-DoF static 6-DoF NDT Yes
escalator day 315 263 0.84 indoors structured strong rich 6-DoF, height changes dynamic 6-DoF NDT Yes
building day 599 666 1.11 indoors structured normal rich 6-DoF dynamic 6-DoF NDT Yes

MCR slow 48 50 1.03 indoors semi-structured normal rich 6-DoF, jerky static OptiTrack Yes
MCR normal 45 52 1.26 indoors semi-structured normal rich 6-DoF, jerky static OptiTrack Yes

MCR fast 34 59 1.76 indoors semi-structured normal rich 6-DoF, jerky static OptiTrack Yes

Quadruped
Robot

MCR slow 00 147 26 0.18 indoors semi-structured normal rich planar, jerky static OptiTrack Yes
MCR slow 01 127 28 0.28 indoors semi-structured normal rich planar, jerky static OptiTrack Yes

MCR normal 00 103 48 0.54 indoors semi-structured normal rich planar, jerky static OptiTrack Yes
MCR normal 01 95 43 0.52 indoors semi-structured normal rich planar, jerky static OptiTrack Yes

MCR fast 00 99 48 0.56 indoors semi-structured normal rich planar, jerky static OptiTrack Yes
MCR fast 01 121 90 0.83 indoors semi-structured normal rich planar, jerky static OptiTrack Yes

Apollo campus road 1186 1887 1.62 outdoors semi-structured normal rich planar dynamic SLAM No

T: Total time. D: Total distance traveled. MCR: motion capture room. ||v||: Mean linear velocity.

3) data/ stores individual sensor data from the
env.bag. Each data has its timestamp that can be
retrieved from the timestamps.txt.

4) data ref kitti/ follows the KITTI format [7] to
store sensor data from data/.

We have three steps to post-process the raw data to gener-
ate the env ref.bag: 1) caused by unperfect IMUs (like
the MPU6050), several missing measurements are linearly
interpolated; 2) poses provided by the motion capture system
are transformed into the body frame with the hand-eye
calibration results; and 3) event packages are republished
at around 1000 Hz for several event-based algorithms [20].

Unrectified RGB images are stored. Events are stored with
timestamps, pixel locations, and polarity. IMU measurements
are also stored with timestamps, gyroscope measurements,
accelerometer measurements, and covariances. Calibration
parameters are stored in yaml files.

V. EXPERIMENT

As one of the applications, we can use this dataset to
benchmark SOTA SLAM systems. Here, we evaluate several
open-source systems with different sensor combinations and
methodologies: VINS-Fusion (IMU+stereo frame cameras)
[21], ESVO (stereo event cameras) [20], A-LOAM (LiDAR-
only) [22], LIO-Mapping (IMU+LiDAR) [23], LIO-SAM
(IMU+LiDAR) [19], and FAST-LIO2 (IMU+LiDAR) [24].
Their data loaders are modified to fit our dataset format and
also released. We calculate the mean absolute trajectory error
(ATE) of estimated trajectories w.r.t. the ground truth. For
LiDAR-based systems, we also report the mapping accuracy
on two sequences by calculating the mean point-to-point
error of algorithms’ maps w.r.t. the ground-truth maps.

The quantitative localization results are reported in Table
IV. “LC” indicates that the loop closure module is used. “×”
means that algorithms fail to finish the sequence. ESVO’s
results are not shown here since it cannot finish all sequences.
It requires events to be continuously triggered to generate
reliable time surface maps for camera tracking. But all these
sequences contain textureless scenarios or static motion. Its

TABLE IV
LOCALIZATION ACCURACY.

Platform Sequence
VINS-

Fusion (LC)
A-

LOAM
LIO-

Mapping
LIO-
SAM

FAST-
LIO2

Handheld

canteen night 0.409 0.067 0.097 0.063 0.071

canteen day 0.691 0.057 0.088 0.053 0.057

garden night 0.328 0.567 0.242 0.254 0.205

garden day 0.518 0.528 0.097 0.069 0.068

corridor day 1.807 0.416 1.755 0.594 1.563

escalator day 2.127 0.981 0.346 0.207 4.193

building day 12.861 1.580 0.916 0.222 0.146

MCR slow × 0.087 0.042 0.063 0.114

MCR normal 0.168 0.328 0.052 0.082 0.121

MCR fast × 0.416 0.099 0.117 ×

Quad.
Robot

MCR slow 00 0.096 0.120 0.032 0.023 0.047

MCR slow 01 0.081 0.054 0.030 0.030 0.051

MCR normal 00 0.094 0.492 0.093 0.042 0.127

MCR normal 01 0.086 0.635 0.390 0.040 0.068

MCR fast 00 0.264 4.601 2.405 0.052 0.408

MCR fast 01 0.130 8.264 2.210 0.066 1.495

Apollo campus road day 77.528 5.707 4.122 7.364 4.080

immediate results on mapping and tracking are shown in
the dataset website. VINS-Fusion and FAST-LIO2 fail in
some cases since they cannot initialize well at the beginning
of the sequence. Without the aid of the IMU, A-LOAM
cannot handle jerky and rapid motion and thus performs
poorly on two MCR sequences and all sequences on the
quadruped robot. Although FAST-LIO2 has a superior real-
time performance based on the filter-based state estimator
and efficient tree structure, it sometimes has unreliable results
on several sequences. Surprisingly, LIO-SAM performs well
on all quadruped robot-based sequences, even at large rotated
and fast motion. The corridor day sequence is challenging to
all methods, where the scene is textureless and structureless.

We also evaluate the mapping quality of A-LOAM and
LIO-SAM on the corridor day and garden day sequences.
The distance map is in Fig. 6. The mean distance is 0.938m
and 0.597m respectively. Especially for the corridor map-
ping, A-LOAM’s map has a large drift on the z-axis.
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Fig. 5. Trajectories of the algorithms on four sequences: MCR fast 00, campus road day, garden day, and escalator day w.r.t. the ground truth.

(a) Corridor day (b) Garden day

Fig. 6. Evaluation of (a) A-LOAM’s and (b) LIO-SAM’s mapping accuracy.

VI. CONCLUSION

This paper presented the FusionPortable benchmark, a
multi-sensor dataset from diverse campus scenes on various
platforms. We advanced the self-contained and plug-and-play
multi-sensor rig that significantly enhances the preception
capability of mobile robots. With the release of this dataset,
we intended to challenge current SLAM approaches and
encouraged future research. As the future work, we plan to
extend this dataset beyond the campus-scale environments.
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