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Abstract—Object co-segmentation aims to identify and 

segment the common objects among a set of similar images. 

Although various explorations have been done for the topic, two 

major problems still remain: (1) How to mitigate the influence 

of background disturbance of each image when we detect the 

common objects. (2) How to leverage common information of 

the image class optimally. To overcome the two problems, we 

resort to co-saliency detection and propose a novel framework, 

which utilizes multi-stage low-rank matrix recovery to eliminate 

the backgrounds and identify the common foregrounds. To 

address the first problem, we firstly use a conventional saliency 

detection model to get saliency map of each image as 

initialization rather than directly dealing with all the images 

together; to address the second problem, we adopt low-rank 

matrix recovery to constrain the common foregrounds as the 

low-rank part, while the background interferences correspond 

to the sparse noises. Besides, an effective refinement method is 

proposed to recover the spatial relationships among the 

segments. The extensive experiments show the proposed model 

can leverage the homogeneous information among the image 

class effectively and provide promising co-segmentation 

performance. 

I. INTRODUCTION  

Saliency detection, which mimics the human visual 

attention mechanism for detecting what attracts humans the 

most [1], has been an important problem in computer vision.  

Recently, with the proliferation of various photo-sharing 

websites, we note the shift that the image data are presented 

as a set which shares common information rather than 

individual samples. Aiming at identifying the common 

objects among multiple images, the co-saliency detection task 

has been a popular and challenging problem. Unlike 

traditional saliency detection models, which deals with 

individual image based on local contrast [1, 2], global 

contrast [3-5] or prior knowledge [6, 7] mainly, co-saliency 

detection additionally leverage the common information 

among multiple images. This technique will  benefit various 

real-word applications such as robotic vision [8-11], image 

retrieval [12, 13] and video discovering [14]. Besides, 

co-segmentation, a closely related task to co-saliency, was 

introduced by Rother et al. [15]. It appends another related 

image to segment the common parts of an image pair. Using 

Markov Random Field (MRF), various models have been 

proposed by adding diverse constraints to optimize the cost 

functions [16-20]. Recently, the focus of co-segmentation has 
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transferred to deal with multiple similar images rather than 

merely an image pair. It makes co-segmentation more 

applicable in computer vision. However, compared with 

co-saliency detection, co-segmentation has two particular 

features: firstly, without supervision information, 

co-segmentation cannot remove the common but no-salient 

regions effectively; secondly, some co-segmentation methods 

resort to human input [21] and interactive [22] to decide 

which cluster is the object. These methods are obviously not 

applicable to large-scale images due to high cost of manual 

labeling. Additionally, co-saliency detection can be readily 

used to achieve co-segmentation results of multiple images 

by appending an unsupervised befitting threshold. These 

differences enable the co-saliency detection can effectively 

remove the common background interference to generate 

better co-segmentation results. Meanwhile, it can mitigate the 

drawbacks of existing supervised co-segmentation methods. 

Therefore, we obtain the co-segmentation results via 

generating co-saliency maps firstly in this work. 

As shown in Fig. 1, to obtain precise co-salient object 

segmentation, two keys problems should be solved: (1) How 

to mitigate the various background interferences of each 

image. (2) How to leverage common information of the 

image class optimally. Cluster-based methods are frequently 

adopted onto the detection of common foreground objects. 

However, it is hard to decide the number of clusters, 

especially when the background interferences are various. 

Besides, they always need to resort to prior knowledge or 

supervision information to decide the label association.  

To address the two problems, we propose a unified 

multi-stage low-rank matrix recovery framework and obtain 

the co-segmentation results on the basis of co-saliency maps. 

As shown in Fig. 2. The first-stage low-rank matrix recovery 

is used to generate saliency map of each image; the second
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Figure 1. To explain the co-saliency detection task. As shown in the first row, 
the footballer with yellow clothes in the first column, the footballer with 

green clothes and the referees in the second column, the footballer with blue 

clothes in the third column and the footballer with white clothes in the last 
column, they all should be salient in single saliency detection task, however, 

they turn into background interferences in the co-salient object detection 

task since only the footballers with red clothes are common salient objects. 
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one is adopted to constrain the common foreground with the 

low-rank structure. These operations simultaneously remove 

the background interferences from each image. Additionally, 

an effective refinement method is introduced to recover the 

spatial relationships among the super-pixels and to obtain a 

better uniformity and clearer boundary.   
We would like to address the following contributions in this 

paper: 

 Firstly, we leverage the advantages of co-saliency 
detection to achieve automatic co-segmentation 
without any supervision information, while it can 
achieve the state-of-the-art performance. 

 Secondly, compared with widely-used cluster-based 
methods, the proposed method does not require 
inputting the number of clusters and judging which 
cluster corresponds to the common foreground 
regions, since the common foreground regions will be 
constrained as a lower-rank component through 
decomposition. The complex background 
interferences can be detected as the sparse part 
automatically.  

 Thirdly, in the second stage low-rank matrix recovery, 
our method is insensitive to complex background. On 
the contrary, the more complex the backgrounds from 
multiple images are, the structure of the backgrounds 
in feature space will be sparser. Thus the low-rank 
part will be recovered more easily, which will benefit 
the separation of the common foregrounds and 
background interferences. 

II. RELATED WORK 

A. Co-saliency detection  

Co-saliency detection was introduced by Jacobs et al. in 
[23]. Aiming at getting co-salient regions between an image 
pair, Chen et al. [24] resorted to a pre-attentive scheme 
without performing the correspondence matching. Li et al. [25] 
linearly fused the saliency map on single image and 

co-saliency map via a complex co-multilayer graph. To extend 
the co-saliency detection from image pair to multiple images, 
Li et al. [26] proposed intra- and inter-saliency and combine 
them to obtain the co-saliency map. To leverage the global 
correspondence among multiple images, Fu et al. [27] utilized 
a cluster-based algorithm and multiply the saliency values 
obtained by different cues to generate the co-saliency map. 
Liu et al. [28] proposed a hierarchical segmentation based 
co-saliency model. On the basis of hierarchical segmentation, 
the global similarity of each region is derived based on 
regional similarity measures, and then intra-saliency map and 
object prior map are integrated to generate the co-saliency 
map for each image. Cao et al. [29] regarded the co-saliency 
detection task from another perspective, they combined the 
existing saliency detection models to generate a final 
co-saliency map, rather than  resorting to the  homogeneous 
information among  the multiple related images. It is also 
worth mentioning that they also applied low-rank 
decomposition in their model. However, the low-rank 
decomposition was adopted to exploit the relationship of the 
saliency maps generated by different models to obtain the 
self-adaptive weights. Whereas in our model, we leverage 
low-rank matrix recovery to explore the low-rank structure of 
the common foregrounds among multiple images.   

B. Co-segmentation  

Rother et al. [15] introduced the definition of 

co-segmentation and proposed an energy model based on 

Markov Random Field (MRF), they leveraged histogram 

matching and a optimization method named trust region 

graph cuts (TRGC) to co-segment the common parts from an 

image pair. Following with the general MRF framework, 

several ideas made varied improvements and expansions 

from different aspects. L. Mukherjee et al. [18] replaced 

L1-norm distance employed in [15] with L2-norm distance to 

measure the foreground discrepancy and adopted quadratic 

pseudo Boolean optimization (QPBO) rather than TRGC to 

approach accurate results. Then D. S. Hochbaum et al. [19] 

 
Figure 2. The framework of the proposed model. 

 
 

 



  

used a maximum flow procedure based on constructed graph 

model to solve this problem. S. Vicente et al. [20] made 

improvements on optimization by using Dual Decomposition 

techniques. K.-Y. Chang et al. [17] introduced the 

inconsistency between foreground and background of each 

image instead of simply taking the foreground coherence into 

consideration.  J. C. Rubio et al. [16]  structured the energy 

function based on MRF through region matching via 

establishing correspondences between the common objects to 

explore inter-image information. 

Unlike the mentioned methods which are based on MRF 

and mostly dealing with an image pair, A. Joulin et al. [30] 

implemented co-segmentation via a classifier trained by 

integrating discriminating clustering with spectral clustering 

and successfully expanded it to multi-class task through 

energy minimization [31]. However, it required human labor 

to choose which cluster was more possible to be foreground. 

Aiming at identifying which cluster corresponded to the 

objects, supervision information was added with various 

strategies. As mentioned in [18] and [19], some scribbles 

should be suggested firstly as the guidance for choosing the 

cluster which contains the objects. As a substitute, D. Batra et 

al [22] proposed to leverage manual strokes on the region 

which was the hardest to judge its pixel labels, and J. Cui et al. 

[32] introduced a premise that one of the images was 

hand-segmented. Without adding supervision information or 

interactive labor, Yong Li et al. [33] composited low-rank 

matrix recovery with discriminating learning to realize object 

co-segmentation. However, this method directly input all the 

similar images without identifying the salient regions of each 

image firstly, which will significantly decrease the 

effectiveness when the background interferences are common, 

since the structure of the common background interferences 

in feature space will also lie in a low-rank subspace. 

III. THE PROPOSED METHOD  

The proposed model as shown in Fig. 2 consists three parts: 

foreground queries generation, co-salient object detection via 

low-rank matrix recovery and spatial correlation recovery. 

A. Foreground queries generation 

We follow [34] to get the saliency map of each image and 

generate the foreground queries with an adaptive threshold, 

which can be seen as the initiation of our object 

co-segmentation model. For the i-th image, we can get Ni 

superpixels via mean-shift algorithm [35]. (We set Ni=200 

empirically). Therefore, the feature representation of the i-th 

image can be noted as [ ... ... ]
1 2
f f f f

i j N
F , where f

j
 is 

the feature representation of the j-th superpixel. The feature 

representation of each superpixel f
j

 is the mean of the 

features in this segment, and 1
f
j




V
R , where V =53 denotes 

the dimension of the adopted features which contains color 

appearance and textural features, amount to 53 dimensions, 

we suggest readers to refer to  [34] for details. We indicate the 

low-rank matrix and sparse noises of the i-th image with 
i

L  

and 
i

S  respectively. The image can be represented as 

i i i
 F L S , where the low-rank part corresponds to the 

background regions while the sparse noise indicates the 

salient regions. Following this idea, we can model the 

problem by 

  * *
( , ) arg min . .1* 1

s ti ii i i i i
   L S L S F L S  (1) 

where 
*iL  expresses the nuclear norm of 

i
L  which restricts 

the rank of 
i

L  and 
1iS  represents the l1-norm of 

i
S , and the 

l1-norm of each column S
ij

 in 
i

S  is used to measure the 

saliency values of the corresponding superpixels. A larger 

1
Sij  means a greater likelihood of the j-th superpixel to be 

salient and results in a greater assigned saliency value. Then 

we accordingly generate the saliency map and normalize it to 

be a gray-scale image. Here 
1
  is used to tradeoff between the 

i
L  and 

i
S .We follow [35] to set all the parameters without 

further tuning.    

Besides, high-level priors which contain location, semantic 

and warm color cues are added to enhance the saliency 

detection results, and a feature transformation matrix T  is 

learned to generate a good feature space, in which most image 

background should lie in a subspace with low dimensional so 

that they can be represented as a low rank matrix. Then the 

input matrix will be decomposed to * *
i i
TFP T F P , where P  

denotes the prior matrix. Therefore Eq. (1) is advanced to 

  * *
( , ) arg min . .1* 1

s ti ii i i i i
   L S L S TFP L S  (2) 

To make exact recovery of corrupted low-rank matrices, 

Augmented Lagrange Multiplier (ALM) method [36] is 

adopted to optimize the formulation. After this process, we 

set the threshold 1.5 * ( )T mean
i i
 S  to select the foreground 

queries in each image.  

By this way, we can choose the foreground superpixels of 

all the images in the same class, and then we represent the 

features of the foreground queries of the i-th image by: 

 [ ... ... ]
1 2
i i i i

i k m
    I  (3) 

where i
k

  represents the features of the k-th foreground 

superpixel in the i-th image and m denotes the number of the 
foreground queries of the i-th image. Therefore, the feature 
matrix of the collected foreground queries of the N images of 

an image class can be represented as [ ... ... ]
1 2 i N

I I I I I . 

B. Co-salient object detection  

After we have obtained the foreground queries of each 

image, we use the second-stage low-rank matrix recovery to 

obtain co-salient regions by inputting all the foreground 

queries together. Since the similar salient regions share 

common patterns, the common salient regions will lie in 

low-rank structure, while the sparse part can be explained as 

the background interferences from different images. This 

strategy can effectively exclude the background interferences 

among the foreground candidates.  

As a result, the feature matrix of coarse foreground set can 

be represented as  I I I L S , where the low-rank matrix 



  

IL  corresponds to the common foregrounds while the sparse 

matrix 
IS  indicates the background interferences. Following 

this idea, we can model the problem as 

  * *
( , ) arg min

* 1
. .   I II I II I

s t   L S L S I L S  (4) 

where 
IL  and 

IS  can be perfectly recovered by ALM [36].  

IS  contains the sparse parts of the N images, that is  

 [ ... ... ]
1 2
co co co co

S S S S
I i N
S  (5) 

After we have obtained 
IL  and 

IS , the l1-norm of each 

column co
S

ik
 in co

S
i

is used to measure the saliency of 

corresponding segments. If 
1

co
S

ik
 is smaller, we assign a 

higher saliency value to the k-th segment. A coarse 

co-saliency map 
co

i  is then accordingly generated and 

normalized to be a gray-scale image.  

C. Spatial correlation recovery  

When we stack all the foreground queries to generate the 

coarse co-saliency maps via the second-stage low-rank matrix 

recovery, spatial correlation among the superpixels in each 

image is totally broken and ignored. However, the 

spatial-wise coherence is another important cue in addition to 

appearance for a salient object, so we adopt a graph-based 

model to recover the spatial relationships among the 

superpixels.  For each image, we follow [6] to establish a 

graph model G=(V, E) with the superpixels as nodes,. The 

edges E are weighted by an affinity matrix [ ]w
ij N Ni i




W , 

where the weight between two connected nodes w
ij

is 

measured by their feature distance (i.e. the Euclidean distance 

of the mean values in the CIT LAB color space) as defined in 

[6]. The degree matrix D  for the given G is 

 11diag , ,
i iN Nd d D , where 

ii ijj
d w .  

The completed affinity matrix becomes 1
( )


  D W  and 

the refined saliency map can be formed by  

 1
( )

co

i i

reS 
    D W  (6) 

Then we segment the refined co-saliency maps by an 
adaptive threshold (e.g. the twice of the mean value of the 
co-saliency map) to generate the object co-segmentation 
results. 

IV. EXPERIMENTS  

A.  Evaluation metrics 

We evaluate the performance of our method on various 
image classes via the parameter average 
intersection-over-union (IOU) score: 

 
1 R GTi i

i
R GTi i




 


IOU  (7) 

where R
i
 is the co-segmentation result and GT

i
 indicates the 

corresponding groundtruth mask.  denotes the number of 

images of an image class sharing common objects. 

B. Comparisons with different components 

We evaluate our model on the widely-used iCoseg dataset 

[22], which consists 38 classes amount to 643 images. 

We generate the saliency maps of the three key stages 

respectively to verify the contributions of each component. 

As shown in Fig. 3, compared with the saliency maps 

obtained by the first-stage low-rank matrix recovery (LR_1), 

the co-saliency maps generated after the second-stage 

low-rank matrix recovery (LR_2) can effectively highlight 

the co-salient regions and remove the background 

interferences. And the spatial correlation recovery stage 

(denotes as 'Refine’) can leverage the spatial relationships 

among the superpixels to refine the co-saliency maps 

effectively. The refined co-saliency maps supply clearer and 

more exact edges between foreground and background. 

Additionally, the saliency values are more uniform after the 

refinement stage. 

Moreover, as shown in Fig. 4, our model can exactly 

eliminate the salient but not common regions in each image 

(e.g. the white football player) while identifying the common 

salient object (e.g. the red football player) precisely.  

 

 

 
Figure 4. Co-segmentation maps to show the effectiveness of our model. 

 

 

 
Figure 3. Qualitative comparisons of each component, the six columns from 
left to right successively denote the input images, the saliency maps after the 

first-stage low-rank matrix recovery, the coarse co-saliency maps after the 

second-stage low-rank matrix recovery, the co-saliency maps after graph 
based refinement, the eventual co-segmentation maps, and the groundtruth. 

 



  

 

C. Comparisons to other models 

To evaluate the effectiveness of the proposed model and 

confirm the validity of each step of our method, we compare 

our model with DLRR [36], MCC [31], and DCC [30]. To 

confirm the effectiveness of the proposed co-salient object 

detection stage, we also compare our results with the single 

saliency pursuing stage, which is indicated by Dir-LR [34]. 

From Table I we can see that our model outperforms others 

obviously, we can also conclude that the eventual result 

contains less background regions compared with other models 

shown in Fig. 5. Additionally, comparing our model with 

Dir-LR, we can conclude that the proposed co-salient object 

detection strategy with low-rank matrix recovery can 

effectively extract the common salient regions among the 

image class. 

D. Discussions 

In the stage of co-salient regions detection stage of our 

model, we deem the background interferences from different 

images as sparse part with the assumption that the 

background interferences are diverse in feature space or they 

should account a relative small part in the collected coarse 

foreground set. The reasons are as follows: low-rank is a 

relative relationship, no explicit stipulation has been 

proposed to state that what size of the rank should be regard 

as low-rank. On the condition that the background 

interferences are consistent and occupy a relative competitive 

size, the background interferences can also share a low-rank 

structure. Therefore, the proposed co-salient object detection 

via low-rank matrix recovery is more effective when the 

background regions are more complex and diverse since it is 

harder for the background regions to share a low-rank 

structure on this occasion.  

Since our model highly depends on the initiation stage to 

obtain the individual saliency maps, it is obvious that 

different conventional saliency detection methods can make 

disparate contributions to the final results. Thus the 

co-saliency detection results will be improved by enhancing 

the saliency detection on single image in the future. Besides, 

with the development of 3D technology, depth information 

such as point cloud has contribute a lot to vision tasks [37, 38]. 

Therefore, resorting to depth information to enhance the 

co-segmentation will be another focus of us in the future.   

TABLE I.   QUANTITATIVE COMPARISONS WITH OTHER MODELS 

ON THE ICOSEG DATASET 

CLASS OURS Dir-LR DLRR MCC DCC 

002 

AlaskanBear 
0.63102 0.4699 0.4108 41.6 46.1 

006 Red Sox 

Players 
0.64626 0.5004 0.6288 13.6 31.4 

014 Liverpool 0.52849 0.365 0.3931 38.7 14.9 

015 Ferrari 0.69972 0.4888 0.5457 38.7 26.4 

017 Taj Mahal 0.453941 0.4002 0.4665 37.1 38.4 

025 helicopter 0.77072 0.7603 0.6235 33.3 61 

032 
Kite-Brighton 

0.87737 0.6747 0.4591 22.1 57.8 

037 

Skating-Skating 
0.412381 0.5646 0.5419 72.7 38.1 

040 Monks 0.661772 0.4765 0.4037 73.8 68.4 

brown_bear 0.562828 0.3949 0.3956 57.5 49.4 

AVG(10 

classes) 
0.62445 0.50953 0.48687 42.91 43.19 

AVG(38 

classes) 
0.59772 0.4683 

 
0.3762 0.4144 

The comparison of IOU values with other models, since the DLRR model only public the results 

of 10 classes, we choose the corresponding results of other models to compare. Besides, the 

average value of totally 38 classes are also shown. 

 

 
Figure 5. Qualitative comparisons to other models. 

 



  

V. CONCLUSIONS  

In this paper, we proposed a new model to obtain object 
co-segmentation via co-saliency detection based on a unified 
multi-stage low-rank matrix recovery framework. The 
proposed model can identify the common foregrounds, and 
eliminate the background interferences effectively. Besides, 
an effective refinement method is proposed to recover the 
spatial relationships among the segments. The experiments 
showed the effectiveness of the proposed model and verified 
the contributions of each step of our method. 
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